

SELF-CONTAINED HEAT PUMP PACKAGE UNITS

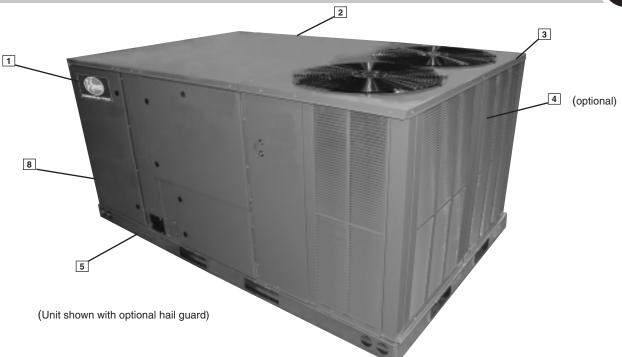
FORM NO. EXP11-782

Featuring Industry Standard R-410A Refrigerant

SJNL- HIGH EFFICIENCY SERIES
NOMINAL SIZES 7.5 & 10 TONS [26.4 & 35.2 kW]

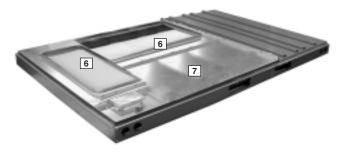
Introduction	3
Unit Features & Benefits	
Selection Procedure	
Model Identification Options	9-10
General Data	
SJNL- Series	11
General Data Notes	12
Performance Data	
SJNL- Series	13-14
Airflow Performance	
SJNL- Series	15-16
Units with Heater Kits	17
Electrical Data	
SJNL- Series	
Dimensional Data	19-22
Accessories	23-41
Mechanical Specifications	42-43
Typical Wiring	44-45

These quality features are included in the Rheem Package Air Conditioner Unit


STANDARD FEATURES INCLUDE:

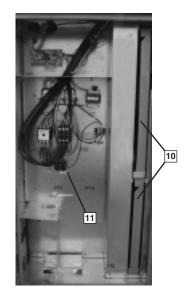
- R-410A HFC refrigerant.
- · Complete factory charged, wired and run tested.
- Scroll compressors with internal line break overload and highpressure protection.
- · Convertible airflow.
- TXV refrigerant metering system.
- High Pressure and Low Pressure/Loss of charge protection standard on all models.
- · Solid Core liquid line filter drier.
- · Cooling operation up to 125 degree F ambient.
- Foil faced insulation encapsulated throughout entire unit minimizes airborne fibers from the air stream.
- Hinged major access door with heavy-duty gasketing, 1/4 turn latches and door retainers.
- Slide Out Indoor fan assembly for added service convenience.
- Powder Paint Finish meets ASTMB117 steel coated on each side for maximum protection. G90 galvanized.
- One piece top cover and one piece base pan with drawn supply and return opening for superior water management.

- · Forkable base rails for easy handling and lifting.
- Single point electrical connections.
- Internally sloped slide out condensate pan conforms to ASHRAE 62 standards.
- High performance belt drive motor with variable pitch pulleys and quick adjust belt system.
- · Permanently lubricated evaporator and condenser.
- Condenser motors are internally protected, totally enclosed with shaft down design.
- 2 inch filter standard with slide out design.
- · 24 volt control system with resettable circuit breakers.
- · Colored and labeled wiring.
- · Copper tube/Aluminum Fin coils.
- Supplemental electric heat provides 100% efficient heating.

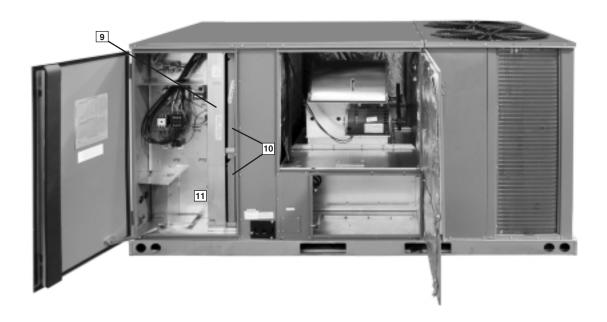

UNIT FEATURES & BENEFITS—SJNL- SERIES

Rheem Package equipment is designed from the ground up with the latest features and benefits required to compete in today's market. The clean design stands alone in the industry and is a testament to the quality, reliability, ease of installation and serviceability that goes into each unit. Outwardly, the large Rheem label (1) identifies the brand to the customer. The sheet-metal cabinet (2) uses nothing less than 18-gauge material for structural components with an underlying coat of G90. To ensure the leak-proof integrity of these units, the design utilizes a one-piece top with a 1/8" drip lip (3), gasket-protected panels and screws. The optional Rheem hail guard (4) is its trademark, and sets the standard for coil protection in the industry. Every Rheem package unit uses the toughest finish in the industry, using electro deposition baked-on enamel tested to withstand a rigorous 1000-hour salt spray test, per ASTM B117.

Anything built to last must start with the right foundation. In this case, the foundation is 14-gauge, commercial-grade, full-perimeter base rails (5), which integrate fork slots and rigging holes to save set-up time on the job site. The base pan is stamped, which forms a 1-1/8" flange around the supply and return cover and has eliminated the worry of water entering the conditioned space (6). The drainpan (7) is made of material that resists the growth of harmful bacteria and is sloped for the latest IAQ benefits. The drainpan slides out for easy cleaning. The insulation has been placed on the underside of the basepan, removing areas that would allow for potential moisture accumulation, which can facilitate growth of harmful bacteria. All insulation is secured with both adhesive and mechanical fasteners, and all edges are hidden.


During development, each unit was tested to U.L. 1995, AHRI 340-370 and other Rheem-required reliability tests. Rheem adheres to stringent ISO 9002 quality procedures, and each unit bears the U.L. and AHRI certification labels located on the unit nameplate (3). Contractors can rest assured that when a Rheem package unit arrives at the job, it is ready to go with a factory charge and quality checks. Each unit also proudly displays the "Made in the USA" designation.

Access to all major compartments is from the front of the unit, including the filter and electrical compartment, blower compartment, heating section, and outdoor section. Each panel is permanently embossed with the compartment name (control/filter access, blower access and furnace access).


Control/filter blower and electric heat compartment access are through large, hinged-access panels secured with 1/4 turn fasteners. On the outside of the panel is the unit nameplate, which contains the model and serial number, electrical data and other important unit information.

The unit charging chart is located on the inside of the electrical

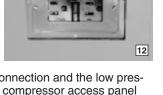
and filter compartment door. Electrical wiring diagrams are found on the control box cover, which allows contractors to move them to more readable locations. To the right of the control box the model and serial number can be found. Having this information on the inside will assure model identification for the life of the product. The production line quality test assurance label is also placed in this location (9). The two-inch throwaway filters (10) are easily removed on a tracked system for easy replacement.

UNIT FEATURES & BENEFITS—SJNL- SERIES

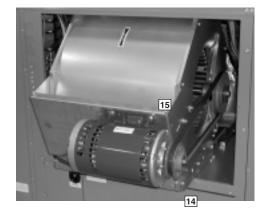
Inside the control box (11), each electrical component is clearly identified with a label that matches the component to the wire diagram for ease of trouble shooting. All wiring is numbered on each end of the termination and color-coded to match the wiring diagram. The control transformer has a low voltage circuit breaker that trips if a low voltage electrical short occurs.

For added convenience in the field, a factory-installed convenience outlet (12) is available. Low and High voltage can enter either from the side or through the base. Low-voltage connections are made through the low-voltage terminal strip on the cooling control board. The high-voltage connection is terminated at the terminal block inside electric heat compartment. The suggested mounting for the field-installed disconnect is on the exterior side of the electrical control box.

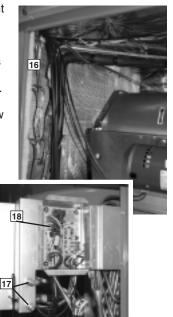
The externally mounted gauge ports, which are permanently identified by embossed wording that


clearly identifies the high pressure connection and the low pressure connection, extend through the compressor access panel (13). With the gauge ports mounted externally, an accurate diagnostic of system operation can be performed quickly and easily.

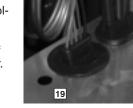
The blower compartment access door is hinged and secured with 1/4 turn fasteners to allow easy maintenance of the blower assembly, the entire assembly slides out by removing the 3/8" screws from the blower retention bracket. The adjustable motor pulley (14) can easily be adjusted by loos-



ening the bolts on either side of the motor mount. Removing the bolts allows for easy removal of the blower pulley by pushing the blower assembly up to loosen the belt. Once the pulley is removed, the motor sheave can be adjusted to the desired number of turns, ranging from 0 to 6 turns open. Where the demands for the job require high static, Rheem has high-static drives available that deliver nominal airflow up to 2" of static. By referring to the airflow performance tables listed in the installation instructions, proper static pressure and CFM requirements can be dialed in. The scroll housing (15) and blower scroll provide quiet and efficient airflow. The blower sheave is secured by an "H" bushing which firmly secures the pulley to the blower shaft for years of trouble-free operation. The "H" bushing allows for easy removal of the blower pulley from the shaft, as opposed to the use of a set screw, which can score the shaft, creating burrs that make blower-pulley removal difficult.



UNIT FEATURES & BENEFITS—SJNL- SERIES


The optional freeze stat refrigerant safety device (16) is attached to the suction line in the blower section. The freeze stat protects the compressor if evaporator coil gets too cold (below freezing) due to low airflow or low evaporator load. The high and low pressure switches (17) and the optional low ambient control are mounted on the gauge port lines inside the compressor access panel. The high pressure switch will shut off the compressor if pressure

the compressor if pressure exceeds 610 PSIG. The low pressure switch is used for loss of charge protection. The low ambient control allows for cooling operation down to 0 degrees ambient by cycling the outdoor fans. Enhanced feature demand defrost control has high and low pressure control inputs with unique pressure switch logic built into the micro-

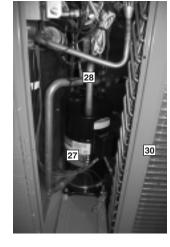
processor to provide compressor and system protection without nuisance lock-outs. LED's on the defrost control provide diagnostic information for service personnel. ([18])

Inside the blower compartment the evaporator can also be viewed. The evaporator uses enhanced fin technology for maximum heat transfer. The thermal expansion valve and venturi distributor assure even distribution of refrigerant throughout the evaporator.

Wiring throughout the unit is neatly bundled and routed. Where wire harnesses go through the condenser bulkhead or blower deck, a molded wire

harness assembly (19) provides an air-tight and water-tight seal, and provides strain relief. Care is also taken to tuck raw edges of insulation behind sheet metal to improve indoor air quality.

The heating compartment contains the latest electric furnace technology on the market. The 100% efficient electric furnace can be factory-installed or easily field-installed. Built with ease-of-installation in mind, the electric furnace is completely wired for slide-in, plug-and-play installation in the field. With choices of 15 to 40 kilowatt offerings, the contractor is assured to get the correct amount of heating output to meet the designed heating load.


Power hook-up in the field is easy with single-point wiring to a terminal block (20) and a polarized plug for the low-voltage connection (21). The electric furnace comes with fuses for the unit (22) and for the electric furnace (23), and is UL certified (24). The electric heating elements are of a wound-wire construction (25) and isolated with ceramic bushings. The limit switch (26) protects the design from over-temperature conditions. Each electric furnace has the capability to be converted from single-stage operation to two-stage operation by removing a jumper on the low-voltage terminal strip.

UNIT FEATURES & BENEFITS—SJNL-SERIES

The compressor compartment houses the heartbeat of the unit. The scroll compressor ([27]) is known for its long life, and for reliable, quiet, and efficient operation. The suction and discharge lines ([28]) are designed to absorb the strain and stress that the starting torque, steady state operation, and shut down cycle imposed on the refrigerant tubing.

A liquid line bi-flow filter drier (29) is conveniently located near the TXV in the outdoor section. The condenser fan motors (29) can easily be accessed and maintained

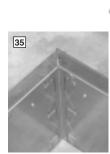
through the unit top. The polarized plug connection allows the motor to be changed quickly and eliminates the need to snake wires through the unit.

The outdoor coil uses the latest enhanced fin design (30) for the most effective method of heat transfer. Optional louvered panels offer hail protection to outdoor coils without obstructing airflow.

Each unit is designed for both downflow or horizontal applications (31) for job configuration flexibility. The return air compartment can also contain an economizer (32). Two economizer models

exit, one for downflow applications, and one for horizontal applications. Each unit is pre-wired for the economizer to allow quick plug-in installation. The

economizer is also available as a factory-installed option. The economizer, which provides free cooling when outdoor conditions are suitable and also provides fresh air to meet local requirements, comes standard with single enthalpy controls. The controls can be upgraded to dual enthalpy easily in the field. The direct drive actuator combined with gear drive dampers has eliminated the need for linkage adjustment in the field. The econo-


nated the need for linkage adjustment in the field. The economizer control has a minimum position setpoint, an outdoor-air setpoint, a mix-air set-

point, a min-tail self-point, and a CO² setpoint. Barometric relief is standard on all economizers. Power Exhaust (33) is easily field-installed. The power exhaust is housed in the barometric relief opening and is easily slipped in with a plug-in assembly.

31

The Rheem roofcurb (34) is made for toolless assembly at the jobsite by sequentially engaging the corner brackets into the adjacent curb sides (35), which makes the assembly process quick and easy.

SELECTION PROCEDURE EXAMPLE—SJNL- SERIES

SELECTION PROCEDURE

To select an SJNL-B Heat Pump unit to meet a job requirement, follow this procedure, with example, using data supplied in this specification sheet.

1. DETERMINE COOLING AND HEATING REQUIREMENTS AND SPECIFIC OPERATING CONDITIONS FROM PLANS AND SPECS.

Example:

415 V - 3 Phase - 50 Hz Voltage-Total Cooling Capacity— 100,000 BTUH [29.3 kW] Sensible Cooling Capacity-75,000 BTUH [22.0 kW] Heating Capacity-90,000 BTUH [26.4 kW] *Condenser Entering Air— 95°F [35°C] DB -65°F [18.3°C] WB; *Evaporator Mixed Air Entering-78°F [25.6°C] DB *Indoor Air Flow (vertical)— 3500 CFM [1652 L/s] *External Static Pressure— 0.40 in. WG [.10 kPa]

2. SELECT UNIT TO MEET COOLING REQUIREMENTS.

Since total cooling is within the range of a nominal 10 ton [35.1 kW] unit, enter cooling performance table at 95°F [35.0 °C] DB condenser inlet air. Interpolate between 63°F [17.2 °C] WB and 67°F [19.4 °C] WB to determine total and sensible capacity and power input for 65°F [18.3 °C] WB evaporator inlet air at 3150 CFM [1486 L/s] indoor air flow (table basis):

Total Capacity = 102,750 BTUH [30.09 kW] Sensible Capacity = 81,400 BTUH [23.83 kW] Power Input (Compressor and Cond. Fans) = 7,500 watts

Use formula in note ① to determine sensible capacity at 78°F [26°C] DB evaporator entering air:

81,400 + (1.10 x 3,500 x (1 - 0.03) x (78 - 80)) Sensible Capacity = 73,931 BTUH [21.65 kW]

3. CORRECT CAPACITIES OF STEP 2 FOR ACTUAL AIR FLOW.

Select factors from airflow correction table at 3500 CFM [1652 L/s] and apply to data obtained in step 2 to obtain gross capacity:

Total Capacity, $102,750 \times 1.02 = 104,805$ BTUH [30.69 kW] Sensible Capacity = $73,931 \times 1.06 = 78,367$ BTUH [22.95 kW] Power Input = $7,500 \times 1.01 = 7,575$ Watts

These are Gross Capacities, not corrected for blower motor heat or power.

4. DETERMINE BLOWER SPEED AND WATTS TO MEET SYSTEM DESIGN.

Enter Indoor Blower performance table at 3500 CFM [1652 L/s]. Total ESP (external static pressure) per the spec of 0.40 in. WG [.10 kPa] includes the system duct and grilles. Add from the table 'Component Air Resistance', 0.07 in. WG [.02 kPa]for wet coil, 0 in. WG [.00 kPa] for downflow air flow, for a total selection static pressure of 0.47 (0.5) in. WG [.12 kPa], and determine:

RPM = 664 WATTS = 974 DRIVE = L (standard 2 H.P. motor)

5. CALCULATE INDOOR BLOWER BTUH HEAT EFFECT FROM MOTOR WATTS, STEP 4.

974 x 3.412 = 3,323 BTUH [0.97 kW]

6. CALCULATE NET COOLING CAPACITIES, EQUAL TO GROSS CAPACITY, STEP 3, MINUS INDOOR BLOWER MOTOR HEAT.

Net Total Capacity = 104,805 - 3,323 = 101,482 BTUH [29.71 kW]

Net Sensible Capacity = 78,367 - 3,323 = 75,044 BTUH [21.97 kW]

7. CALCULATE UNIT INPUT AND JOB EER.

Total Power Input = 7,575 (step 3) + 974 (step 4) = 8,549 Watts

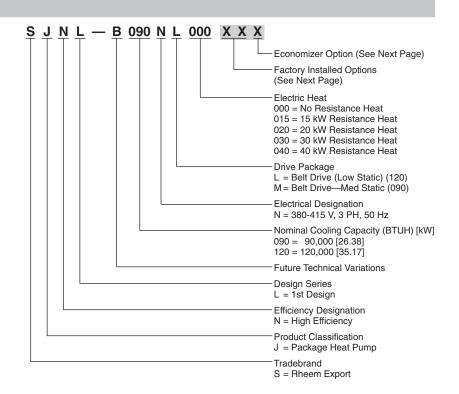
 $EER = \frac{\text{Net Total BTUH [kW] (step 6)}}{\text{Power Input, Watts (above)}} = \frac{101,482}{8,549} = 11.87$

8. SELECT UNIT HEATING CAPACITY.

From Heater Kit Table select kW to meet heating capacity requirement; multiply kW x 3412 to convert to BTUH

Use 40 kW Heater Kit Heater Kit Model: Heater Kit Capacity: RXJJ-CC40D 97,924 BTUH [28.7 kW]

Add indoor blower heat effect (STEP 5) to Heater Kit Capacity to get total heating capacity:


97,924 + 3,323 = 101,247 BTUH [29.6 kW]

9. CHOOSE MODEL SJNL-B120NL040

*NOTE: These operating conditions are typical of a commercial application in a 95°F/79°F [35°C/26°C] design area with indoor design of 76°F [24°C] DB and 50% RH and 10% ventilation air, with the unit roof mounted and centered on the zone it conditions by ducts.

MODEL IDENTIFICATION—SJNL- SERIES

FACTORY INSTALLED OPTION CODES FOR SJNL (7.5 & 10 TON) [26.4 & 35.2 kW]

Option Code	Hail Guard	Non-Powered Convenience Outlet	Low Ambient/ Freeze Stat
AD	X		
AG		x	
AP			Х
ВҮ	x		Х
BJ	x	х	
CX	x	x	Х
JC		x	Х

ECONOMIZER SELECTION FOR SJNL (7.5 & 10 TON) [26.4 & 35.2 kW]

	No Economizer	Single Enthalpy Economizer With Barometric Relief	Single Enthalpy Economizer With Barometric Relief And Smoke Detector
А	х		
В		X	
С			Х

[&]quot;x" indicates factory installed option.

Instructions for Factory Installed Option(s) Selection

Note: Three characters following the model number will be utilized to designate a factory-installed option or combination of options. If no factory option(s) is required, nothing follows the model number.

Step 1. After a basic rooftop model is selected, choose a *two-character* option code from the FACTORY INSTALLED OPTION SELECTION TABLE.

Proceed to Step 2.

Step 2. The last option code character is utilized for factory-installed economizers. Choose a character from the FACTORY INSTALLED ECONOMIZER SELECTION TABLE.

Examples:

NOMINAL SIZES 7.5 & 10 TONS [26.4 & 35.2 kW]

Model SJNL- Series	BO9ONM	B120NL
Cooling Performance ¹		
Gross Cooling Capacity Btu [kW]	82,000 [24.03]	104,000 [30.47]
EER/SEER ²	10.9/NA	11.5/NA
Nominal CFM/AHRI Rated CFM [L/s]	2525 [1192]	3150 [1486]
AHRI Net Cooling Capacity Btu [kW]	79,000 [23.15]	100,000 [29.3]
Net Sensible Capacity Btu [kW]	59,800 [17.52]	74,400 [21.8]
Net Latent Capacity Btu [kW]	19,200 [5.63]	25,600 [7.5]
Integrated Part Load Value3	12	11.8
Net System Power kW	7.25	8.7
Heating Performance (Heat Pumps)		
Heating Input Btu [kW] Rating	72,000 [21.1]	91,000 [26.66]
System Power KW/COP	6.2/3.4	7.84/3.4
Low Temp. Btuh [kW] Rating	45,000 [13.18]	57,500 [16.85]
System Power KW/COP	5.73/2.3	7.39/2.28
Compressor	0.7 0/ 2.0	1.00/2.20
No./Type	1/Scroll	1/Scroll
	88	88
Outdoor Sound Rating (dB)4		
Outdoor Coil—Fin Type	Louvered	Louvered
Tube Type	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	24.88 [2.31]	28.8 [2.68]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]
Refrigerant Control	TX Valves	TX Valves
Indoor Coil—Fin Type	Louvered	Louvered
Tube Type	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	13.5 [1.25]	15.75 [1.46]
Rows / FPI [FPcm]	3 / 18 [7]	4 / 15 [6]
Refrigerant Control	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/1 [25.4]	1/1 [25.4]
Outdoor Fan—Type	Propeller	Propeller
No. Used/Diameter in. [mm]	2/24 [609.6]	2/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1
CFM [L/s]	8000 [3775]	8000 [3775]
No. Motors/HP	2 at 1/3 HP	2 at 1/2 HP
Motor RPM	1075	1075
Indoor Fan—Type	FC Centrifugal	FC Centrifugal
No. Used/Diameter in. [mm]		
	1/15x15 [381x381] Belt/Variable	1/15x15 [381x381]
Drive Type/No. Speeds		Belt/Variable
No. Motors	1	1
Motor HP	2	2
Motor RPM	1725	1725
Motor Frame Size	56	56
Filter—Type	Disposable	Disposable
Furnished	Yes	Yes
(No.) Size Recommended in. [mm]	(6)2x18x18 [51x457x457]	(3)2x18x18 [51x457x457]
	•	(3)2x18x24 [51x457x610]
Refrigerant Charge Oz. (Sys. 1/Sys. 2) [g]	350 [9922]	496 [14062]
Weights		
Net Weight lbs. [kg]	1009 [458]	1185 [538]
Ship Weight Ibs. [kg]	1089 [494]	1265 [574]
	1000 [101]	1200 [07 4]

See Page 12 for Notes.

GENERAL DATA—SJNL-SERIES

NOTES:

- 1. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 360.
- 2. EER and/or SEER are rated at AHRI conditions and in accordance with DOE test procedures.
- 3. Integrated Part Load Value is rated in accordance with AHRI Standard 210/240 or 360. Units are rated at 80° F ambient, 80° F entering dry bulb, and 67° F entering wet bulb at AHRI rated cfm.
- 4. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

SYSTEMS PERFORMANCE—SJNL- SERIES

COOLING PERFORMANCE DATA—B090

					ITERING INDOC	R AIR @ 80°F	[26.7°C] dbE ①)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		-M [L/s]	3030 [1430]	2525 [1192]	2020 [953]	3030 [1430]	2525 [1192]	2020 [953]	3030 [1430]	2525 [1192]	2020 [953]
_		DR ①	.0	.03	.08	.0	.03	.08	.0	.03	.08
	75 [23.9]	Total BTUH [kW] Sens BTUH [kW] Power	101.5 [29.7] 65.8 [19.3] 5.3	98.0 [28.7] 56.7 [16.6] 5.2	94.4 [27.7] 48.1 [16.6] 5.1	96.6 [28.3] 78.0 [22.9] 5.2	93.2 [27.3] 67.9 [19.9] 5.1	89.8 [26.3] 58.5 [19.9] 5.0	93.7 [27.5] 89.0 [26.1] 5.1	90.4 [26.5] 78.1 [22.9] 5.0	87.1 [25.5] 67.8 [22.9] 4.9
O U T	80 [26.7]	Total BTUH [kW] Sens BTUH [kW] Power	98.7 [28.9] 64.4 [18.9] 5.6	95.3 [27.9] 55.5 [16.3] 5.5	91.8 [26.9] 47.1 [16.3] 5.4	93.8 [27.5] 76.5 [22.4] 5.5	90.5 [26.5] 66.7 [19.5] 5.4	87.2 [25.5] 57.5 [19.5] 5.3	90.9 [26.6] 87.6 [25.7] 5.4	87.7 [25.7] 76.9 [22.5] 5.3	84.5 [24.8] 66.8 [22.5] 5.2
D O O R	85 [29.4]	Total BTUH [kW] Sens BTUH [kW] Power	95.9 [28.1] 63.0 [18.5] 5.9	92.5 [27.1] 54.2 [15.9] 5.8	89.2 [26.1] 46.1 [15.9] 5.7	90.9 [26.6] 75.1 [22.0] 5.8	87.7 [25.7] 65.5 [19.2] 5.7	84.5 [24.8] 56.5 [19.2] 5.6	88.1 [25.8] 86.2 [25.3] 5.7	85.0 [24.9] 75.7 [22.2] 5.6	81.9 [24.0] 65.8 [22.2] 5.5
D R Y	90 [32.2]	Total BTUH [kW] Sens BTUH [kW] Power	93.0 [27.2] 61.4 [18.0] 6.2	89.8 [26.3] 53.0 [15.5] 6.1	86.5 [25.3] 45.1 [15.5] 6.0	88.0 [25.8] 73.6 [21.6] 6.1	85.0 [24.9] 64.3 [18.8] 6.0	81.9 [24.0] 55.5 [18.8] 5.9	85.2 [25.0] 84.6 [24.8] 6.0	82.2 [24.1] 74.4 [21.8] 5.9	79.2 [23.2] 64.7 [21.8] 5.8
B U L B	95 [35]	Total BTUH [kW] Sens BTUH [kW] Power	90.1 [26.4] 60.0 [17.6] 6.5	86.9 [25.5] 51.7 [15.1] 6.4	83.8 [24.6] 44.1 [15.1] 6.3	85.1 [24.9] 72.1 [21.1] 6.4	82.1 [24.1] 62.9 [18.4] 6.3	79.2 [23.2] 54.4 [18.4] 6.2	82.3 [24.1] 82.3 [24.1] 6.4	79.4 [23.3] 73.2 [21.4] 6.2	76.5 [22.4] 63.7 [21.4] 6.1
T E M	100 [37.8]	Total BTUH [kW] Sens BTUH [kW] Power	87.2 [25.5] 58.5 [17.1] 6.9	84.1 [24.6] 50.4 [14.8] 6.8	81.1 [23.8] 43.0 [14.8] 6.6	82.2 [24.1] 70.5 [20.7] 6.8	79.3 [23.2] 61.6 [18.0] 6.7	76.4 [22.4] 53.2 [18.0] 6.6	79.4 [23.3] 79.4 [23.3] 6.7	76.6 [22.4] 71.9 [21.1] 6.6	73.8 [21.6] 62.7 [21.1] 6.5
P E R A	105 [40.6]	Total BTUH [kW] Sens BTUH [kW] Power	84.2 [24.7] 56.9 [16.7] 7.3	81.2 [23.8] 49.0 [14.4] 7.1	78.3 [22.9] 41.8 [14.4] 7.0	79.2 [23.2] 68.9 [20.2] 7.2	76.4 [22.4] 60.2 [17.6] 7.1	73.7 [21.6] 52.1 [17.6] 6.9	76.4 [22.4] 76.4 [22.4] 7.1	73.7 [21.6] 70.5 [20.7] 7.0	71.0 [20.8] 61.5 [20.7] 6.9
T U R E	110 [43.3]	Total BTUH [kW] Sens BTUH [kW] Power	81.2 [23.8] 55.2 [16.2] 7.7	78.3 [22.9] 47.6 [13.9] 7.6	75.5 [22.1] 40.6 [13.9] 7.4	76.2 [22.3] 67.3 [19.7] 7.6	73.5 [21.5] 58.9 [17.3] 7.5	70.9 [20.8] 51.0 [17.3] 7.3	73.4 [21.5] 73.4 [21.5] 7.5	70.8 [20.7] 69.1 [20.2] 7.4	68.2 [20.0] 60.3 [20.0] 7.3
°F [°C]	115 [46.1]	Total BTUH [kW] Sens BTUH [kW] Power	78.1 [22.9] 53.5 [15.7] 8.1	75.4 [22.1] 46.2 [13.5] 8.0	72.7 [21.3] 39.4 [13.5] 7.8	73.2 [21.4] 65.7 [19.2] 8.0	70.6 [20.7] 57.5 [16.8] 7.9	68.0 [19.9] 49.8 [16.8] 7.8	70.3 [20.6] 70.3 [20.6] 8.0	67.9 [19.9] 67.7 [19.8] 7.8	65.4 [19.2] 59.1 [19.2] 7.7
	120 [48.9]	Total BTUH [kW] Sens BTUH [kW] Power	75.1 [22.0] 51.9 [15.2] 8.6	72.4 [21.2] 44.8 [13.1] 8.4	69.8 [20.5] 38.3 [13.1] 8.3	70.1 [20.5] 64.0 [18.8] 8.5	67.6 [19.8] 56.0 [16.4] 8.3	65.2 [19.1] 48.6 [16.4] 8.2	67.3 [19.7] 67.3 [19.7] 8.4	64.9 [19.0] 64.9 [19.0] 8.3	62.5 [18.3] 57.9 [18.3] 8.1

DR —Depression ratio dbE —Entering air dry bulb

Total —Total capacity x 1000 BTUH Sens —Sensible capacity x 1000 BTUH

wbE—Entering air wet bulb Power—KW input

NOTES:

① When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

HEATING PERFORMANCE DATA—B090

		IDB		60°F [15.5°C]			70°F [21.1°C]			80°F [26.7°C]	
	CI	M [L/s]	3030 [1430]	2525 [1192]	2020 [953]	3030 [1430]	2525 [1192]	2020 [953]	3030 [1430]	2525 [1192]	2020 [953]
0	0	Total BTUH [kW]	28.7 [8.4]	28.3 [8.3]	27.9 [8.2]	26.6 [7.8]	26.2 [7.7]	25.8 [7.6]	24.5 [7.2]	24.1 [7.1]	23.8 [7.0]
	[-17.8]	Power	3.9	4.0	4.1	4.3	4.5	4.6	4.9	5.0	5.2
D O	5	Total BTUH [kW]	33.3 [9.8]	32.8 [9.6]	32.4 [9.5]	31.2 [9.1]	30.7 [9.0]	30.3 [8.9]	29.1 [8.5]	28.7 [8.4]	28.3 [8.3]
	[26.7]	Power	4.0	4.1	4.2	4.4	4.5	4.7	5.0	5.1	5.3
R	10	Total BTUH [kW]	37.9 [11.1]	37.4 [11.0]	36.8 [10.8]	35.8 [10.5]	35.3 [10.3]	34.8 [10.2]	33.7 [9.9]	33.2 [9.7]	32.7 [9.6]
	[-12.2]	Power	4.0	4.1	4.2	4.5	4.6	4.8	5.1	5.2	5.3
D R Y	15 [32.2]	Total BTUH [kW] Power	42.5 [12.5] 4.1	41.9 [12.3] 4.2	41.3 [12.1] 4.3	40.4 [11.8] 4.6	39.8 [11.7] 4.7	39.2 [11.5] 4.8	38.3 [11.2] 5.2	37.7 [11.0] 5.3	37.2 [10.9] 5.4
B	20	Total BTUH [kW]	47.1 [13.8]	46.4 [13.6]	45.8 [13.4]	45.0 [13.2]	44.4 [13.0]	43.7 [12.8]	42.9 [12.6]	42.3 [12.4]	41.7 [12.2]
	[-6.6]	Power	4.2	4.3	4.4	4.7	4.8	4.9	5.3	5.4	5.5
B	25	Total BTUH [kW]	51.7 [15.1]	51.0 [14.9]	50.2 [14.7]	49.6 [14.5]	48.9 [14.3]	48.2 [14.1]	47.5 [13.9]	46.8 [13.7]	46.1 [13.5]
	[37.8]	Power	4.3	4.4	4.5	4.8	4.9	5.0	5.3	5.5	5.6
E	30	Total BTUH [kW]	56.3 [16.5]	55.5 [16.3]	54.7 [16.0]	54.2 [15.9]	53.4 [15.6]	52.7 [15.4]	52.1 [15.3]	51.3 [15.0]	50.6 [14.8]
M	[-1.1]	Power	4.4	4.5	4.6	4.9	5.0	5.1	5.4	5.6	5.7
P E R	35 [43.3]	Total BTUH [kW] Power	60.9 [17.8] 4.5	60.0 [17.6] 4.6	59.2 [17.3] 4.7	58.8 [17.2] 4.9	58.0 [17.0] 5.1	57.1 [16.7] 5.2	56.7 [16.6] 5.5	55.9 [16.4] 5.6	55.1 [16.1] 5.8
A T U	40 [4.4]	Total BTUH [kW] Power	65.5 [19.2] 4.6	64.6 [18.9] 4.7	63.7 [18.7] 4.8	63.4 [18.6] 5.0	62.5 [18.3] 5.2	61.6 [18.0] 5.3	61.3 [18.0] 5.6	60.4 [17.7] 5.7	59.6 [17.5] 5.9
RE	45	Total BTUH [kW]	70.1 [20.5]	69.1 [20.2]	68.1 [20.0]	68.0 [19.9]	67.0 [19.6]	66.1 [19.4]	65.9 [19.3]	65.0 [19.0]	64.0 [18.8]
	[46.1]	Power	4.6	4.8	4.9	5.1	5.2	5.4	5.7	5.8	6.0
°F	50	Total BTUH [kW]	74.7 [21.9]	73.7 [21.6]	72.6 [21.3]	72.6 [21.3]	71.6 [21.0]	70.6 [20.7]	70.5 [20.7]	69.5 [20.4]	68.5 [20.1]
[°C]	[10]	Power	4.7	4.8	5.0	5.2	5.3	5.5	5.8	5.9	6.1

IDB-Indoor air dry bulb

SYSTEMS PERFORMANCE—SJNL- SERIES

COOLING PERFORMANCE DATA—B120

					ITERING INDOC)R AIR @ 80°F)			
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
		FM [L/s]	3780 [1784]	3150 [1487]	2520 [1189]	3780 [1784]	3150 [1487]	2520 [1189]	3780 [1784]	3150 [1487]	2520 [1189]
		DR ①	.01	.05	.01	.01	.05	.01	.01	.05	.01
	75	Total BTUH [kW]	128.9 [37.8]	124.4 [36.4]	119.9 [35.1]	120.2 [35.2]	116.0 [34.0]	111.7 [32.7]	115.4 [33.8]	111.3 [32.6]	107.3 [31.4]
	[23.9]	Sens BTUH [kW]	82.3 [24.1]	70.8 [20.7]	60.1 [20.7]	96.0 [28.1]	83.6 [24.5]	71.9 [24.5]	109.3 [32.0]	95.9 [28.1]	83.3 [28.1]
		Power	6.4	6.3	6.2	6.4	6.2	6.1	6.3	6.2	6.1
١.	80	Total BTUH [kW]	125.7 [36.8]	121.3 [35.5]	116.9 [34.3]	116.9 [34.3]	112.8 [33.1]	108.7 [31.8]	112.1 [32.8]	108.2 [31.7]	104.3 [30.6]
O U	[26.7]	Sens BTUH [kW]		69.4 [20.3]	58.9 [20.3]	94.2 [27.6]	82.1 [24.1]	70.7 [24.1]	107.6 [31.5]	94.5 [27.7]	82.1 [27.7]
Ϊ́		Power	6.7	6.6	6.5	6.7	6.5	6.4	6.6	6.5	6.4
D	85	Total BTUH [kW]	122.5 [35.9]	118.2 [34.6]	113.9 [33.4]	113.8 [33.3]	109.8 [32.2]	105.8 [31.0]	109.0 [31.9]	105.2 [30.8]	101.3 [29.7]
0	[29.4]	Sens BTUH [kW]	79.0 [23.1]	68.0 [19.9]	57.8 [19.9]	92.7 [27.2]	80.8 [23.7]	69.6 [23.7]	106.1 [31.1]	93.2 [27.3]	81.0 [27.3]
Ř	120117	Power	7.0	6.9	6.8	7.0	6.9	6.7	6.9	6.8	6.7
D	90	Total BTUH [kW]	119.5 [35.0]	115.3 [33.8]	111.1 [32.6]	110.7 [32.4]	106.8 [31.3]	102.9 [30.1]	105.9 [31.0]	102.2 [29.9]	98.5 [28.9]
R	[32.2]	Sens BTUH [kW]	77.6 [22.7]	66.8 [19.6]	56.8 [19.6]	91.2 [26.7]	79.5 [23.3]	68.5 [23.3]	104.5 [30.6]	91.9 [26.9]	80.0 [26.9]
Υ		Power	7.4	7.3	7.1	7.3	7.2	7.1	7.2	7.1	7.0
В	95	Total BTUH [kW]	116.5 [34.1]	112.4 [32.9]	108.3 [31.7]	107.7 [31.6]	103.9 [30.4]	100.1 [29.3]	102.9 [30.1]	99.3 [29.1]	95.7 [28.0]
Ų	[35]	Sens BTUH [kW]	76.2 [22.3]	65.6 [19.2]	55.8 [19.2]	89.8 [26.3]	78.3 [22.9]	67.5 [22.9]	102.9 [30.1]	90.7 [26.6]	79.0 [26.6]
l L B	[00]	Power	7.8	7.6	7.5	7.7	7.5	7.4	7.6	7.5	7.3
-	100	Total BTUH [kW]	113.5 [33.3]	109.6 [32.1]	105.6 [30.9]	104.8 [30.7]	101.1 [29.6]	97.4 [28.5]	100.0 [29.3]	96.5 [28.3]	93.0 [27.2]
T E	[37.8]	Sens BTUH [kW]	74.8 [21.9]	64.5 [18.9]	54.9 [18.9]	88.5 [25.9]	77.2 [22.6]	66.6 [22.6]	100.0 [29.3]	89.6 [26.3]	78.1 [26.3]
M	[07:0]	Power	8.1	8.0	7.9	8.1	7.9	7.8	8.0	7.9	7.7
P E	105	Total BTUH [kW]	110.7 [32.4]	106.8 [31.3]	102.9 [30.1]	101.9 [29.9]	98.4 [28.8]	94.8 [27.8]	97.1 [28.5]	93.7 [27.5]	90.3 [26.5]
l E	[40.6]	Sens BTUH [kW]	73.6 [21.6]	63.4 [18.6]	53.9 [18.6]	87.1 [25.5]	76.2 [22.3]	65.8 [22.3]	97.1 [28.5]	88.5 [25.9]	77.2 [25.9]
A	[10.0]	Power	8.5	8.4	8.3	8.5	8.3	8.2	8.4	8.3	8.1
T U	110	Total BTUH [kW]	107.9 [31.6]	104.1 [30.5]	100.3 [29.4]	99.2 [29.1]	95.7 [28.0]	92.2 [27.0]	94.4 [27.7]	91.0 [26.7]	87.7 [25.7]
ΙŘ	[43.3]	Sens BTUH [kW]	72.4 [21.2]	62.4 [18.3]	53.1 [18.3]	86.0 [25.2]	75.2 [22.0]	65.0 [22.0]	94.4 [27.7]	87.5 [25.6]	76.3 [25.6]
E	[40.0]	Power	9.0	8.8	8.7	8.9	8.8	8.6	8.8	8.7	8.5
°F	115	Total BTUH [kW]	105.2 [30.8]	101.5 [29.7]	97.8 [28.7]	96.5 [28.3]	93.1 [27.3]	89.7 [26.3]	91.7 [26.9]	88.5 [25.9]	85.2 [25.0]
[°C]	[46.1]	Sens BTUH [kW]	71.3 [20.9]	61.5 [18.0]	52.4 [18.0]	85.1 [24.9]	74.4 [21.8]	64.4 [21.8]	91.7 [26.9]	86.7 [25.4]	75.6 [25.0]
	[40.1]	Power	9.4	9.3	9.1	9.4	9.2	9.0	9.3	9.1	9.0
	120	Total BTUH [kW]	102.6 [30.1]	99.0 [29.0]	95.4 [28.0]	93.9 [27.5]	90.6 [26.5]	87.3 [25.6]	89.1 [26.1]	85.9 [25.2]	82.8 [24.3]
	[48.9]	Sens BTUH [kW]	70.4 [20.6]	60.8 [17.8]	51.9 [17.8]	84.1 [24.6]	73.6 [21.6]	63.7 [21.6]	89.1 [26.1]	85.9 [25.2]	75.1 [24.3]
	[40.3]	Power	9.9	9.7	9.6	9.8	9.7	9.5	9.8	9.6	9.4

DR —Depression ratio dbE —Entering air dry bulb

Total —Total capacity x 1000 BTUH

wbE—Entering air wet bulb

Sens —Sensible capacity x 1000 BTUH Power—KW input

NOTES:

When the entering air dry bulb is other than 80°F [27°C], adjust the sensible capacity from the table by adding [1.10 x CFM x (1 – DR) x (dbE – 80)].

HEATING PERFORMANCE DATA—B120

$\overline{}$		IDB		60°F [15.5°C]			70°F [21.1°C]			80°F [26.7°C]	
	CI	FM [L/s]	3780 [1784]	3150 [1487]	2520 [1189]	3780 [1784]	3150 [1487]	2520 [1189]	3780 [1784]	3150 [1487]	2520 [1189]
0	0 [-17.8]	Total BTUH [kW]	38.2 [11.2] 5.3	37.6 [11.0] 5.4	37.1 [10.9] 5.5	35.1 [10.3] 5.8	34.6 [10.1] 6.0	34.1 [10.0] 6.1	32.0 [9.4] 6.5	31.6 [9.3] 6.6	31.1 [9.1] 6.8
T D O	5 [26.7]	Total BTUH [kW] Power	43.8 [12.8] 5.3	43.2 [12.7] 5.5	42.6 [12.5] 5.6	40.8 [12.0] 5.9	40.2 [11.8] 6.0	39.6 [11.6] 6.2	37.7 [11.0] 6.6	37.1 [10.9] 6.7	36.6 [10.7] 6.9
R	10 [-12.2]	Total BTUH [kW] Power	49.5 [14.5] 5.4	48.8 [14.3] 5.6	48.1 [14.1] 5.7	46.4 [13.6] 6.0	45.8 [13.4] 6.1	45.1 [13.2] 6.3	43.3 [12.7] 6.6	42.7 [12.5] 6.8	42.1 [12.3] 7.0
D R Y	15 [32.2]	Total BTUH [kW] Power	55.2 [16.2] 5.5	54.4 [15.9] 5.6	53.6 [15.7] 5.8	52.1 [15.3] 6.0	51.3 [15.0] 6.2	50.6 [14.8] 6.3	49.0 [14.4] 6.7	48.3 [14.2] 6.9	47.6 [13.9] 7.0
B	20 [-6.6]	Total BTUH [kW] Power	60.8 [17.8] 5.6	60.0 [17.6] 5.7	59.1 [17.3] 5.9	57.7 [16.9] 6.1	56.9 [16.7] 6.3	56.1 [16.4] 6.4	54.7 [16.0] 6.8	53.9 [15.8] 7.0	53.1 [15.6] 7.1
B	25 [37.8]	Total BTUH [kW] Power	66.5 [19.5] 5.7	65.6 [19.2] 5.8	64.6 [18.9] 5.9	63.4 [18.6] 6.2	62.5 [18.3] 6.4	61.6 [18.0] 6.5	60.3 [17.7] 6.9	59.5 [17.4] 7.0	58.6 [17.2] 7.2
E M	30 [-1.1]	Total BTUH [kW] Power	72.2 [21.2] 5.7	71.1 [20.8] 5.9	70.1 [20.5] 6.0	69.1 [20.2] 6.3	68.1 [20.0] 6.4	67.1 [19.7] 6.6	66.0 [19.3] 6.9	65.0 [19.0] 7.1	64.1 [18.8] 7.3
P E R	35 [43.3]	Total BTUH [kW] Power	77.8 [22.8] 5.8	76.7 [22.5] 6.0	75.6 [22.2] 6.1	74.7 [21.9] 6.3	73.7 [21.6] 6.5	72.6 [21.3] 6.7	71.6 [21.0] 7.0	70.6 [20.7] 7.2	69.6 [20.4] 7.4
A T U	40 [4.4]	Total BTUH [kW] Power	83.5 [24.5] 5.9	82.3 [24.1] 6.0	81.1 [23.8] 6.2	80.4 [23.6] 6.4	79.3 [23.2] 6.6	78.1 [22.9] 6.7	77.3 [22.6] 7.1	76.2 [22.3] 7.3	75.1 [22.0] 7.4
R E	45 [46.1]	Total BTUH [kW] Power	89.1 [26.1] 6.0	87.9 [25.8] 6.1	86.6 [25.4] 6.3	86.1 [25.2] 6.5	84.8 [24.8] 6.7	83.6 [24.5] 6.8	83.0 [24.3] 7.2	81.8 [24.0] 7.3	80.6 [23.6] 7.5
°F [°C]	50 [10]	Total BTUH [kW] Power	94.8 [27.8] 6.0	93.5 [27.4] 6.2	92.1 [27.0] 6.3	91.7 [26.9] 6.6	90.4 [26.5] 6.7	89.1 [26.1] 6.9	88.6 [26.0] 7.2	87.4 [25.6] 7.4	86.1 [25.2] 7.6

IDB-Indoor air dry bulb

AIRFLOW PERFORMANCE—7.5 TON [26.4 kW] — SIDEFLOW — 50 Hz

1.1 1.2 1.2 1.2 1.3 1.5 1.3 1.5 1.3 1.5
National Static Pressure —Inches of Water [kPa] 0.8 [.20] 0.9 [.22] 1.0 [.25] 1.1 [.27] 1.2 [.30] 1.3 [.32] 1.4 [.35] 1.5 [.37] 1.6 [.37] 1.7 [.37] 1.8 [.37] 1.2 [.37] 1.2 [.30] 1.3 [.37] 1.3 [.37] 1.2 [.37] 1.2 [.30] 1.3 [.37] 1.3 [.37] 1.3 [.37] 1.4 [.37]
CB [20] 0.9 [22] 1.0 [25] 1.1 [27] 1.2 [30] 1.3 [32] 1.4 [35] 1.4 [35] 1.5 [37] 1.0 RPM W RPM W RPM W RPM W RPM W RPM PM PPM <
RPM W RPM RPM </th
708 390 742 1037 775 1087 808 1139 840 1194 871 1251 902 1310 932 1372 713 1022 747 1071 779 1123 811 1176 843 1233 874 1291 904 1333 934 1416 726 1096 752 1108 790 1203 821 1217 877 1336 907 1398 937 1463 726 1096 758 1148 790 1203 821 1204 882 1381 917 1466 940 1512 733 137 766 1247 827 1367 887 1482 921 1466 944 1562 750 1228 812 1344 841 1406 871 1470 899 1537 928 1669 942 1562 760 1277 829 <t< th=""></t<>
713 1022 747 1071 779 1123 811 1176 843 1233 874 1291 904 1353 934 1416 779 1088 752 1148 780 1201 877 1373 907 1388 937 1463 726 1086 758 1148 780 1201 887 1319 887 1381 917 1486 940 1562 733 1137 766 1240 824 1360 887 1430 916 1496 944 1565 740 1228 781 1324 841 140 899 1537 928 1606 949 1626 770 1320 800 1394 841 140 899 1537 928 1665 949 1620 770 1330 800 1394 841 140 878 1585 942 1650 962 <t></t>
719 1058 752 1108 784 1161 816 1271 847 1274 877 1335 907 1336 907 1368 937 1465 726 1096 758 1148 790 1203 821 1260 852 1319 882 1831 911 1445 940 1512 733 1137 765 1191 776 1247 827 1306 857 1430 916 1445 940 1565 750 1228 781 1284 841 1406 871 1470 899 1537 928 1606 949 1620 770 1320 800 1397 850 1460 878 1526 907 1594 934 1650 952 1678 770 1330 800 1397 850 1460 878 1586 912 1529 962 1739 771
726 1096 756 1148 790 1203 821 1260 852 1319 882 1381 911 1445 940 1512 733 1137 766 1191 796 1247 827 1305 867 1367 887 1430 916 1496 944 1565 741 1181 773 1236 804 1294 884 1384 841 1406 871 1480 991 1560 949 1620 750 1277 790 1336 820 1397 850 1460 871 1450 894 1656 942 1678 770 1330 800 1390 830 1450 859 1517 887 1685 942 1739 987 1869 1802 781 1386 801 1440 879 1540 887 1647 954 1718 950 1792 957
733 1137 765 1191 796 1247 827 1305 867 1430 916 1496 944 1565 741 1181 773 1236 804 1294 834 1534 864 1417 893 1482 921 1550 949 1620 750 1228 781 1286 812 1348 841 1406 871 1470 899 1537 928 1606 955 1678 770 1370 1336 820 1397 850 1460 878 1562 907 1594 934 1665 962 1739 770 1330 800 1390 830 1452 859 1517 887 1685 942 1727 969 1807 781 1385 811 1447 840 151 868 1647 924 1718 930 1736 977 1869 1938
741 1181 773 1236 804 1294 834 1354 864 1417 893 1482 921 1550 949 1620 750 1228 781 1286 812 1344 841 1406 871 1470 899 1537 928 1606 955 1678 770 1277 790 1336 820 1397 850 1460 878 1526 907 1594 934 1665 962 1739 770 1330 800 1452 859 1517 887 1685 942 1727 969 1802 781 1385 811 1447 840 151 887 1647 924 1718 950 1792 989 1869 1869 1869 1869 1869 1869 1869 1869 1898 1898 1898 1898 1898 1898 1898 1898 1898 1898<
750 1228 781 1285 812 1344 841 1406 871 1470 899 1537 928 1606 955 1678 760 1277 780 1336 820 1450 880 1460 878 1526 907 1594 934 1665 962 1739 770 1330 800 1390 830 1452 859 1517 887 1585 915 1655 942 1727 969 1802 781 1386 811 1447 840 151 889 157 896 1647 94 1718 950 1792 977 1869 173 733 1443 822 1506 851 1572 899 1741 933 1784 960 1869 977 1869 14
760 1277 790 1336 820 1397 850 1460 878 1526 907 1594 934 1665 962 1739 770 1330 800 1390 830 1452 889 1617 887 1685 915 1655 942 1727 969 1802 781 1386 811 1447 840 1511 868 1577 896 1647 924 1718 950 1792 977 1869 179 783 1443 822 1506 851 1572 899 1641 933 1784 960 1860 985 1938
770 1330 800 1390 830 1452 859 1517 887 1585 915 1655 942 1727 969 1802 781 1385 811 1447 840 1511 888 1577 896 1647 924 1718 950 1792 977 1869 1773 1443 822 1506 851 1572 879 1640 906 1711 933 1784 960 1860 985 1938 1
781 1385 811 1447 840 1511 868 1577 896 1647 924 1718 950 1792 977 1869 7733 1443 822 1506 851 1572 879 1640 906 1711 933 1784 960 1860 985 1938
793 1443 822 1506 851 1572 879 1640 906 1711 933 1784 960 1860 985 1938

NOTE: L-Drive left of bold line, M-Drive right of bold line.

	9	778					
				2	823		
	37.1]	H	44	4	028		
Z	3.0 [2237.1]	BK65H	1VP-44	3	026		
						2	296
				-	1011		
				9	565		
				2	598		
M	491.4]	10H -44		ВК90Н 1VP-44	2-44	4	631
2	2.0 [1491.4]	BK6	1VF	3	664		
				2	269		
				-	731		
Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM		

NOTES: 1. Factory sheave settings are shown in bold type.

Do not set motor sheave below minimum or maximum turns open shown.
 Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure
 Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

AIRFLOW CORRECTION FACTORS-7.5 TON [26.4 kW]

ACTUAL—CFM	2000	2100	2200	2300	2400	2500	2600	2700 2	2800	2900	3000
[F/s]	[944]	[991]	[1038]	[1085]	[1038] [11085] [11133] [11180] [11227] [11274] [1321]	[1180]	[1227]	[1274]	[1321]	=	[1416]
TOTAL MBH	0.97	26'0	86.0	0.98	0.99	1.00 1	1.00	1.01 1.02	1.02	1.02	1.02
SENSIBLE MBH	0.87	0.90	0.92	0.94	0.97	0.99	1.02	1.04	1.06	1.06	1.06
POWER KW	0.98	0.98	0.99	0.99	0.99	1.00	1.00 1	1.00	1.01	1.01 1.01	1.01
		-44-				1-1	١,				

NOTES: 1. Multiply correction factor times gross performance data.

2. Resulting sensible capacity cannot exceed total capacity.

[] Designates Metric Conversions

COMPONENT AIRFLOW RESISTANCE—7.5 TON [26.4 kW]

				Standa	Standard Indoor Airflow—CFM [L/s]	or Airflo	w—CFI	[F/s]			
CFM [L/s]	2000 [944]	2100 [991]	2200 [1038]	2300 [1085]	2300 2400 2500 2600 2700 2800 2900 3000 [1085] [1133] [1127] [1274] [1321] [1368] [1416]	2500 [1180]	2600 [1227]	2700 [1274]	2800 [1321]	2900 [1368]	3000 [1416]
				Resi	Resistance—Inches Water [kPa]	-Inches	Water [kPa]			
Wat Coil	90.0	0.07	0.08	0.08	60'0	0.10	0.10 0.10		0.11	0.12	0.12
Wet coll	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]	[.03]
Downstow	0.04	0.05	90.0	0.07	0.08	0.08	0.09	0.09	0.10	0.10	0.11
DOWIEIOW	[.01]	[.01]	[.01]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]
Downflow Economizer RA	0.08	0.09	0.09	0.10	0.10	0.10	0.11	0.11	0.12	0.12	0.13
Damper Open	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]	[.03]	[.03]
Horizontal Economizer RA	0.08	0.09	0.09	0.10	0.10	0.10	0.11	0.11	0.12	0.12	0.13
Damper Open	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.03]	[.03]	[.03]	[.03]	[:03]
Concentric Grill RXRN-FA65	0.08	0.09	0.10	0.12	0.13	0.15	0.17	0.19	0.21	0.23	0.25
RXMC-CC04	[.02]	[.02]	[.02]	[:03]	[:03]	[.04]	[.04]	[:02]	[:02]	[90]	[90:]

AIRFLOW PERFORMANCE—10 TON [35.1 kW] — SIDEFLOW

	Model		SJNL-B120	٥																								
Air	Voltage		380-415-3 Phase	-3 Phas	و ا																							
Flow											Ex	ternal §	Static Pi	External Static Pressure—Inches of Water [kPa]	-Inche	s of Wa	ter [kPa	J.										
CFM [L/s]	0.1 [.02]	.02]	0.2 [.05]	_	0.3 [.07]		0.4[.10]	_	0.5 [.12]	9.0	0.6 [.15]	0.7	0.7 [.17]	0.8 [.20]	.20]	0.9 [.22]	22]	1.0 [.25]	5]	1.1 [.27]		1.2 [.30]		1.3 [.32]		1.4 [.35]	1.5	[.37]
	RPM	8	RPM	W	RPM \	W	RPM W	RPM	≫	RPM	*	RPM	×	RPM	>	RPM	>	RPM	W	RPM \	W	RPM \	W RP	RPM N	W RPM	M M	/ RPM	>
2500 [1180]	ı	ı	ı	- 25	554 6	643 5	289 689	688 624	1 734	4 657	781	069	829	722	878	753	928	783	086	813 10	1032 8	842 10	1085 87	870 113	1139 897	97 1194	34 923	1251
2600 [1227]	I	1	1	- 26	.9 999	672 6	600 72	720 634	1 769	299 6	818	669	869	731	921	762	973	791 1	1027	821 10	1082 8	849 11	1138 87	876 11	1195 90	903 1252	52 929	1311
2700 [1274]	ı	ı	1	- 2	21.7	9 902	612 75	757 645	908	229 8	860	209	913	740	896	270	1023	800 1	1079	829 11	1136 8	856 11	1195 88	883 12	1254 91	910 1314	14 935	1376
2800 [1321]	1	ı	9222 (693 58	289 7	745 6	623 79	797 656	3 851	1 688	906	719	962	750	1018	6//	1076	808	1135	837 11	1195 8	864 12	1256 89	891 13	1318 916	1381	31 941	1445
2900 [1368]	I	I	292	733 60	601 7	9 282	634 84	842 667	668 2	869 6	926	729	1014	759	1074	789	1134	817 1	1195	845 12	1258 8	872 13	1321 86	898 13	1386 923	23 1451	10	1
3000 [1416]	I	I	280 2	.9 222	613 8	834 6	646 891	91 678	Н	60/ 0	1010	740	1071	692	1133	798	1196	826 1	1260	853 13	1325 8	880 13	1391 90	905 14	1458 930	30 1526	9ā	1
3100 [1463]	229	292	265	825 62	626 8	884 6	658 94	945 689	\vdash	6 720	1069	750	1132	6//	1196	807	1262	835 1	1328	862 13	1396 8	888 14	1464 91	913 15	1534 937	37 1604)4 —	1
3200 [1510]	572	817	8 909	878 63	638 9:	939 6	670 1002	02 701	1066	6 731	1131	260	1197	789	1264	817	1332	844 1	1401	870 14	1471 8	896 15	1542 92	921 16	1614 —		1	1
3300 [1557]	285	871	618 6	934 66	621 8	9 666	682 1064	54 712	Н	1 742	1198	771	1267	266	1336	827	1407	853 1	1478	879 15	1551 9	904 16	1624 92	929 16	— 669	_		1
3400 [1604]	299	929	632 6	995 66	663 10	1062 6	694 1130	30 724	1199	9 754	1269	782	1340	810	1412	837	1485	863 1	1559	888 16	1635 9	913 17	1711 93	937 17	1788 —	 -		1
3500 [1652]	613	992	645	1060 67	676 11	1130 7	707 1200	00 736	127	.2 765	1344	793	1418	820	1493	847	1568	872 1	1645	897 17	1723 9	922 18	1801 -	 - 		 -		1
3600 [1699]	627	1058	658 1	1129 68	689 12	1201 7	719 1275	75 748	134	227 6	1424	804	1500	831	1577	857	1655	882 1	1734	907 18	1815 9.	930 18	1896 –	_	1	_		
3700 [1746]	641	1129	672	1203 70	702 12	1277	732 1353	53 760	1430	0 788	1507	816	1586	842	1666	298	1747	892 1	1828	916 19	1911 9.	939 19	1995 –	 	 	_		I
3800 [1793]	655	1204	989	1280 7	716 13	1358 7	745 1436	36 773	3 151	2 800	1595	827	1676	853	1759	878	1842	902 1	1926	926 20	2012 -		 	 - 	 -			
	3- 13-1	1 10		Admin at	10 10 10	1																						

NOTE: L-Drive left of bold line, M-Drive right of bold line.

W 2.0 [1491.4] 3.0 [25 2.0 [1]			9	7 807 763
LO [1491.4] 2.0 [1491.4] BK90H 1 Z 3 4 5 6 1 2 711 679 647 615 583 551 989 939	Σ	3.0 [2237.	BK65H	1VP-44	3 4	895 847
LO [1491.4] 2.0 [1491.4] BK90H 1 2 3 4 5 6 71 679 647 615 583 551					2	
2.0 [1491.4] 8k90H 1 2 3 4 5 771 679 647 615 583					-	982
2.0 [1491.4] BK90H 1 2 3 4 771 679 647 615					9	551
2.0 [14] 8 RKG 1 2 3 711 679 647					2	583
1 2 717		191.4]	H06	-44	4	615
1 1 1	_	2.0 [14		1VP	က	647
					2	629
Drive Package Motor H.P. [W] Blower Sheave Motor Sheave Turns Open RPM					-	711
	Drive Package	Motor H.P. [W]	Blower Sheave	Motor Sheave	Turns Open	RPM

NOTES: 1. Factory sheave settings are shown in bold type.

2. Do not set motor sheave below minimum turns open shown.

3. Re-adjustment of sheave required to achieve rated airflow at AHRI minimum External Static Pressure

4. Drive data shown is for horizontal airflow with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

AIRFLOW CORRECTION FACTORS— 10 TON [35.1 kW]

ACTUAL—CFM	2500	2600		2800	2900	3000	3100	3200	3300	3400	3500	3600	3700	3800
[F/s]	[1180]	[1227]	[1274]	_	[1368]	[1416]	1463]	[1510]	[1557	[1604]	[1652]	[1699]	[1746]	[1793]
TOTAL MBH	0.97	0.97	0.98	0.98	0.99	1.00	1.00	1.01	1.02	1.02	1.02	1.02	1.02	1.02
SENSIBLE MBH	0.87	06.0	0.92	0.94	0.97	0.99	1.02	1.04	1.06	1.06	1.06	1.06	1.06	1.06
POWER KW	96.0	0.98	0.99	0.99	0.99	1.00	1.00	1.00	1.01	1.01 1.01	1.01	1.01	1.01	1.01

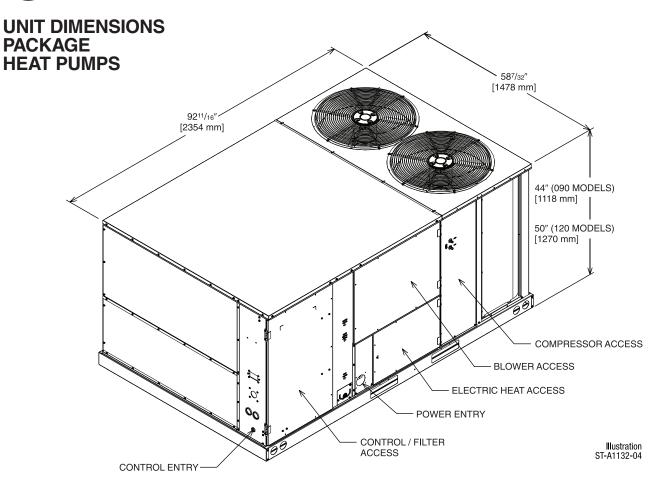
NOTES: 1. Multiply correction factor times gross performance data. 2. Resulting sensible capacity cannot exceed total capacity.

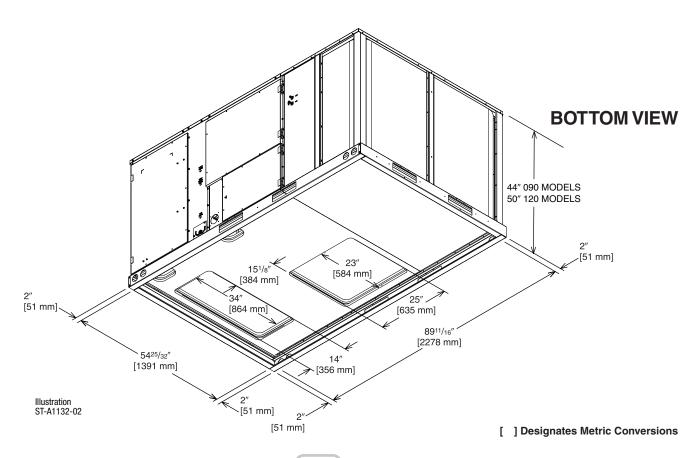
[] Designates Metric Conversions

COMPONENT AIRFLOW RESISTANCE— 10 TON [35.1 kW]

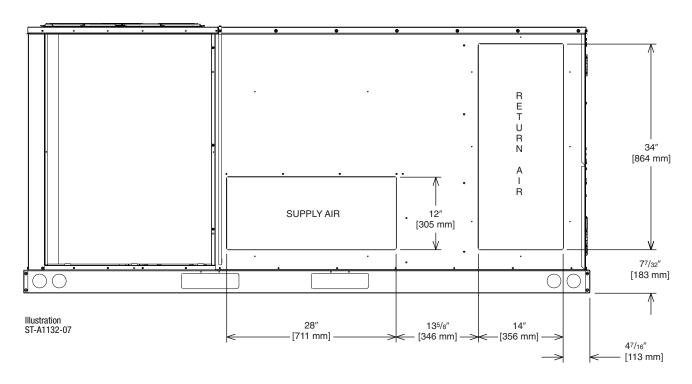
					Sta	Indard I	ndoor A	Standard Indoor Airflow—CFM [L/s]	CFM [L	[s/				
CFM [L/s]	2500 [1180]	2600 [1227]	2700 2800 [1274] [1321]	2800 [1321]	2900 [1368]	3000 [1416]	3100 [1463]	2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 11527] [1274] [1321] [13	3300 [1557]	3400 [1604]	3500 [1652]	3600 3700 3800 [1699] [1746] [1793]	3700 [1746]	3800 [1793]
					6	esistan	ce—Inc	Resistance—Inches Water [kPa]	er [kPa					
Wet Coil	0.06	0.06 [.01]	0.06	0.06	0.07	0.07	0.07	0.07	0.07	0.07	0.07 [.02]	0.08 [.02]	0.08	0.08
Downflow Economizer RA	0.08	0.08	0.08	0.09	0.09	0.09	0.10	0.10	0.10	0.10	0.11	0.11	0.12	0.12
Damper Open	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[:03]	[:03]	[.03]
Horizontal Economizer RA	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.02	90.0	90.0	90.0	90.0	0.07
Damper Open	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.01]	[.02]
Horizontal Economizer OA	0.08	0.08	80.0	0.09	60.0	0.10	0.10	0.11	0.12	0.12	0.13	0.13	0.14	0.14
Damper Open	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[.02]	[:03]	[.03]	[:03]	[:03]	[:03]	[:03]	[.03]
Concentric Grill RXRN-FA75 or RXRN-FA75 & Transition RXMC-CD04	0.15	0.17	0.19	0.22	0.24	0.27	0.30	0.31	0.34	0.37	DNA	DNA	DNA	DNA
Concentric Grill RXRN-AA71 or RXRN-AA75 & Transition RXMC-CE05	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	DNA	0.17	0.18	0.18

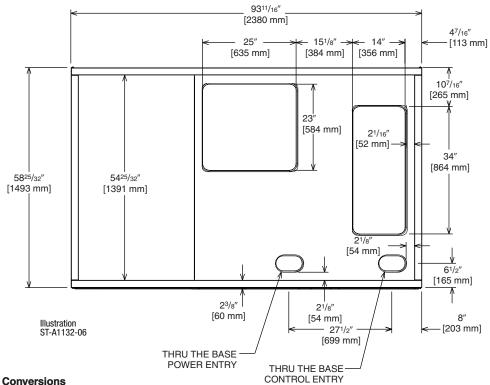
			Single Power S	380/415 VOLT, THREE PHASE, 60 HZ, AUXILIARY ELECTRIC HEATER KITS CHARACTERISTICS AND APPLICATION Sinnle Power Sunnity for Roth Unit and Heater Kit	ASE, 60 HZ, AUX it and Heater Kit	KILIARY ELECTR	IC HEATER KIT	S CHARACTER	ISTICS AND APF	APPLICATION Senarate Power Supply for Both Unit and Heater Kit	nlv for Roth Unit	and Heater Ki	
			Heater Kit				Heat Pump		Heat	Heater Kit		Heat Pump	
Model No.	RXJJ-	No. of	Rated Heater	Heater	Heater	Unit Min. Ckt.	Over Current Protective Device	Over Current Protective Device Size	Min. Ckt.	Max. Fuse	Min. Circuit	Over Current Protective Device Size	urrent evice Size
-JNLS	Nominal kW	Steps	380/415V	380/415V	380/415V	380/415V	Min./Max. 380V	Min./Max. 415V	380/415V	380/415V	380/415V	Min./Max. 380V	Min./Max. 415V
	No Heat			1		21/21	25/30	25/30			21/21	25/30	25/30
	CC15D	-	9/10.8	30.75/36.68	13.7/15	39/40	40/45	45/45	18/19	20/20		1	I
B090NM	CC20D	-	12/14.4	41.06/48.97	18.3/20	44/46	20/20	20/20	23/25	25/25			
	CC30D	-	18/21.5	61.5/73.36	27.4/29.9	26/26	09/09	70/70	35/38	35/40	I		I
	CC40D	-	24.1/28.7	82.12/97.95	36.6/39.9	67/71	02/02	80/80	46/50	50/50	I		I
	No Heat		I	1		28/28	35/45	35/45		1	28/28	35/45	35/45
	CC15D	-	9/10.8	30.75/36.68	13.7/15	46/47	20/20	20/20	18/19	20/20	I		I
B120NL	CC20D	-	12/14.4	41.06/48.97	18.3/20	51/53	09/09	09/09	23/25	25/25			
	CC30D	-	18/21.5	61.5/73.36	27.4/29.9	99/89	70/70	70/70	35/38	35/40			
	CC40D	_	24.1/28.7	82.12/97.95	36.6/39.9	74/78	80/80	80/80	46/50	20/20		I	I


*= For Canadian use only. Uses "P" fuses for inductive circuit. + = Field installed only.


ELECTRICAL DATA—SJNL- SERIES

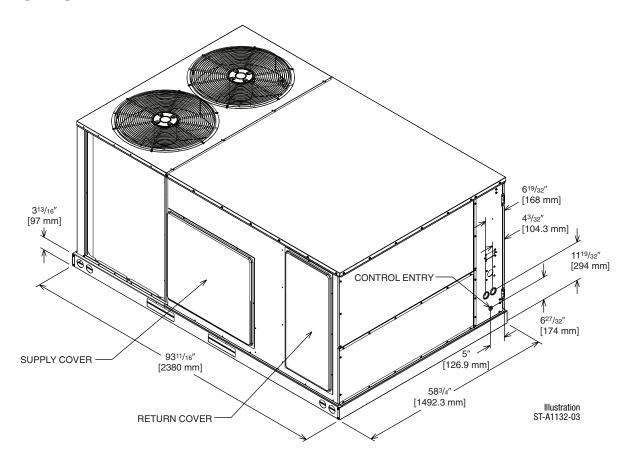
	ELECTRICAL DATA – S	SJNL- SERIES	
		B090NM	B120NL
_	Unit Operating Voltage Range	342-457	342-457
ation —	Volts	380/415	380/415
Ë	Minimum Circuit Ampacity	21/21	28/28
Unit Information	Minimum Overcurrent Protection Device Size	25/25	35/35
5	Maximum Overcurrent Protection Device Size	30/30	45/45
	No.	1	1
	Volts	380/415	380/415
5	Phase	3	3
Compressor Motor	RPM	3450	3450
7	HP, Compressor 1	10 1/4	12 3/4
Te SS	Amps (RLA), Comp. 1	12.2/12.2	16.7/16.7
Ē	Amps (LRA), Comp. 1	101/101	111/111
ŏ	HP, Compressor 2		
5	Amps (RLA), Comp. 2		
	Amps (LRA), Comp. 2		
	No.	2	2
<u>I</u>	Volts	380/415	380/415
e. s	Phase	1	1
Condenser Motor	HP	1/3	1/2
Puo -	Amps (FLA, each)	1/1	1.5/1.5
5	Amps (LRA, each)	1.8/1.8	3.1/3.1
	No.	1	1
- Ean	Volts	380/415	380/415
Į.	Phase	3	3
pora	HP	2	2
Evaporator Fan	Amps (FLA, each)	4/4	4/4
_	Amps (LRA, each)	28/28	28/28



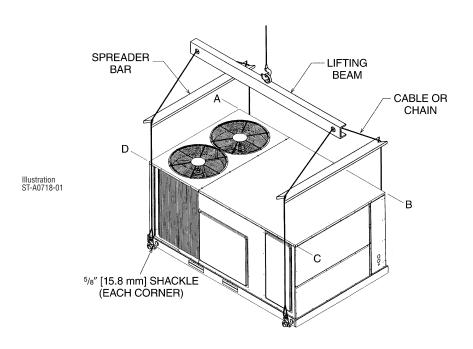


UNIT DIMENSIONS PACKAGE HEAT PUMPS

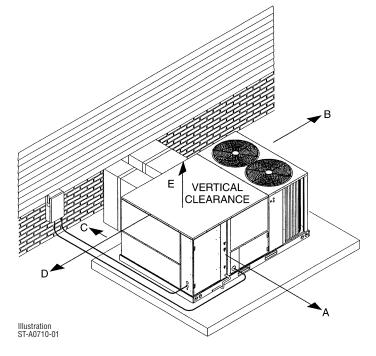
SUPPLY AND RETURN DIMENSIONS FOR HORIZONTAL APPLICATION



SUPPLY AND RETURN DIMENSIONS FOR DOWNFLOW APPLICATIONS


UNIT DIMENSIONS PACKAGE HEAT PUMPS

CORNER WEIGHTS


Capacity Tons [kW]	Corne	r Weights	by Perce	ntage
	Α	В	С	D
7.5-10 [26.4-35.2]	32%	26%	20%	22%

CLEARANCES

The following minimum clearances are recommended for proper unit performance and serviceability.

Recommended Clearance In. [mm]	Location
48 [1219]	A - Front
18 [457]	B - Condenser Coil
18 [457]	C - Duct Side
18 [457]	*D - Evaporator End
60 [1524]	E - Above
*Without Economizer. 48" [1219 mm] With Economizer

FIELD INSTALLED ACCESSORY EQUIPMENT

Accessory	Model Number	Shipping Weight Lbs. [kg]	Installed Weight Lbs. [kg]	Factory Installation Available?
Thermostats	See Thermostat Spec	cification Sheet for Detai	ls (T11-001)	No
	RXJJ-CC15 (D)	46 [20.9]	36 [16.3]	Yes
Electric Heaters	RXJJ-CC20 (D)	46 [20.9]	36 [16.3]	Yes
Electric neaters	RXJJ-CC30 (D)	47 [21.3]	37 [16.8]	Yes
	RXJJ-CC40 (D)	49 [22.2]	39 [17.7]	Yes
Economizer w/Single Enthalpy	RXRD-PDCM3	90 [40.8]	81 [36.7]	Yes
Economizer w/Single Enthalpy and Smoke Detector	RXRD-SDCM3	91 [41.3]	82 [57.2]	Yes
Dual Enthalpy Kit	RXRX-AV02	3 [1.4]	1 [.5]	Yes
Horizontal Economizer w/Single Enthalpy	RXRD-RDCM3	94 [42.6]	89 [40.4]	No
Carbon Dioxide Sensor	RXRX-AR02	3 [1.4]	2 [1.0]	No
Manual Fresh Air (Left Panel Mounted)	RXRF-KDA1	38 [17.2]	31 [14.0]	No
Manual Fresh Air (Return Panel)	RXRF-JDA1	26 [11.8]	21 [9.5]	No
Motorized Fresh Air (Return Panel)	RXRF-JDB1	43 [19.5]	38 [17.2]	No
Motor Kit for RXRF-KDA1	RXRX-AW02	35 [15.9]	27 [12.2]	No
Roofcurb, 14"	RXKG-CAE14	90 [40.8]	85 [38.5]	No
Roofcurb, 24"	RXKG-CAE24	140 [63.5]	135 [61.2]	No
	RXRX-CDCE50	300 [136.1]	290 [131.5]	No
Desferre Adenters	RXRX-CFCE54	325 [147.4]	315 [142.9]	No
Roofcurb Adapters	RXRX-CFCE56	350 [158.8]	340 [154.2]	No
	RXRX-CGCC12	450 [204.1]	410 [186.0]	No
Concentric Diffuser (Step-Down, 20" Round)	RXRN-FA65	139 [63.0]	60 [27.2]	No
Concentric Diffuser (Flush, 20" Round)	RXRN-FA75	54 [24.4]	42 [19.0]	No
Concentric Diffuser (Step-Down, 18 x 28)	RXRN-AA61	200 [90.7]	185 [83.9]	No
Concentric Diffuser (Step-Down, 18 x 32)	RXRN-AA66	247 [112.0]	227 [103.0]	No
Concentric Diffuser (Flush, 18 x 28)	RXRN-AA71	170 [77.1]	155 [70.3]	No
Concentric Diffuser (Flush, 18 x 32)	RXRN-AA76	176 [79.8]	161 [73.0]	No
Downflow Transition (Rect. to Round)	RXMC-CD04	15 [6.8]	13 [5.9]	No
Downflow Transition (Rect. to Rect., 18 x 28)	RXMC-CE05 ①	18 [8.2]	16 [7.3]	No
Downflow Transition (Rect. to Rect., 18 x 32)	RXMC-CF06 @	20 [9.1]	18 [8.2]	No
Low-Ambient Control Kit	RXRZ-A03	3 [1.4]	2 [1.0]	Yes
Freeze-Stat Kit	RXRX-AM05	1 [.5]	0.5 [.2]	Yes
Outdoor Coil Louver Kit (090)	RXRX-AAD01H	25 [11.3]	22 [10.0]	Yes
Outdoor Coil Louver Kit (120)	RXRX-AAD01J	29 [13.2]	26 [11.8]	Yes
Non-Powered Convenience Outlet	RXRX-AN01	2 [1.0]	1.5 [0.7]	Yes

NOTES: ① Used with RXRN-AA61 and RXRN-AA71 concentric diffusers. ② Used with RXRN-AA66 and RXRN-AA76 concentric diffusers.

THERMOSTATS

100-Series * Non-Programmable

200-Series *
Programmable

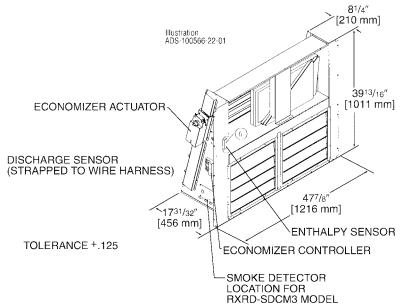
300-Series *
Deluxe
Programmable
400-Series *
Special Applications/

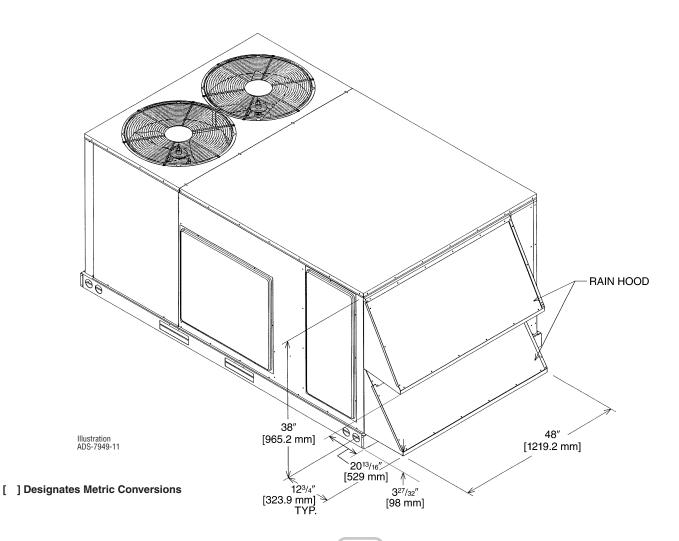
Programmable

500-Series * Communicating/ Programmable

Brand	Unique Model Number Prefix		Descriptor (3 Characters)	Series (3 Characters)	System (2 Characters)	Type (2 Characters)
R	HC	-	TST	101	GE	MS
			TST=Thermostat	100=Non-Programmable		
				200=Programmable	GE=Gas/Oil/Electric	
Buo	Division			300=Deluxe Programmable	HP=Heat Pump MD=Modulating Furnace	SS=Single-Stage
RHC	=Rheem			400=Special Applications/ Programmable	DF=Dual Fuel UN=Universal AC/HP/GE	MS=Multi-Stage
				500=Communicating/ Programmable	CM=Communicating	

^{*} Photos are representative. Actual models may vary.
For detailed thermostat match-up information, see specification sheet form number T11-001.

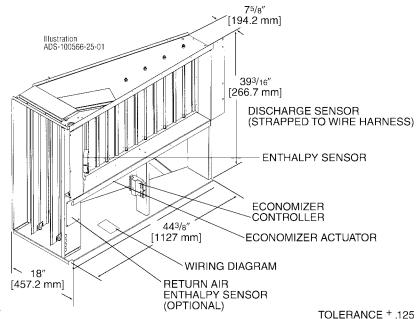


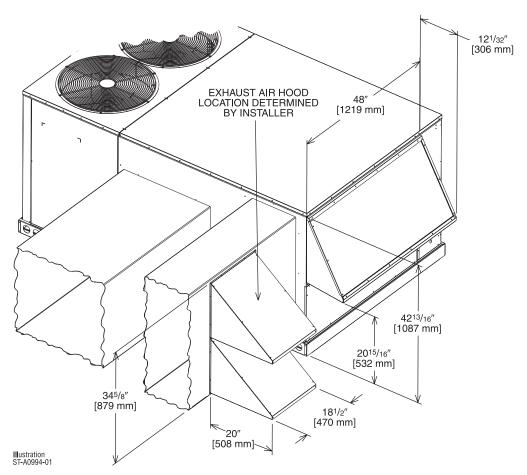

ECONOMIZERS

Use to Select Factory Installed Options Only

RXRD-PDCM3—Single Enthalpy (Outdoor)
RXRD-SDCM3—Single Enthalpy w/Smoke Detector
RXRX-AV02—Dual Enthalpy Upgrade Kit
RXRX-AR02—Optional Wall-Mounted CO₂ Sensor

- Features Honeywell Controls
- Available Factory Installed or Field Accessory
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin Electrical Connections
- Pre-Configured—No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Downflow Duct Application.
- Optional Remote Minimum Position Potentiometer (Honeywell #S963B1128) is Available from Prostock.
- Field Installed Power Exhaust Available
- Prewired for Smoke Detector

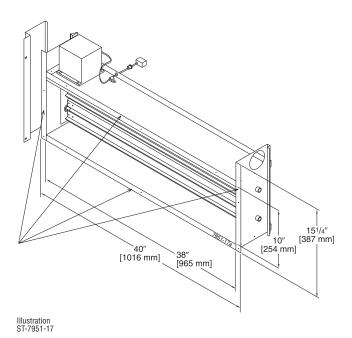




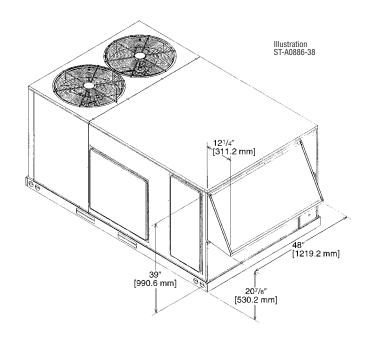
ECONOMIZER FOR HORIZONTAL DUCT INSTALLATIONField Installed Only

RXRD-RDCM3—Single Enthalpy (Outdoor) RXRX-AV02—Dual Enthalpy Upgrade Kit RXRX-AR02—Wall-mounted CO₂ Sensor

- Features Honeywell Controls
- Available as a Field Installed Accessory Only
- Gear Driven Direct Drive Actuator
- Fully Modulating (0-100%)
- Low Leakage Dampers
- Slip-In Design for Easy Installation
- Plug-In Polarized 12-pin Electrical Connections
- Pre-Configured—
- No Field Adjustments Necessary
- Standard Barometric Relief Damper
- Single Enthalpy with Dual Enthalpy Upgrade Kit Available
- CO₂ Input Sensor Available
- Field Assembled Hood Ships with Economizer
- Economizer Ships Complete for Horizontal Duct Application
- Optional Remote Minimum Position Potentiometer (Honeywell #S963B1128) is Available from Prostock
- Field Installed Power Exhaust Available



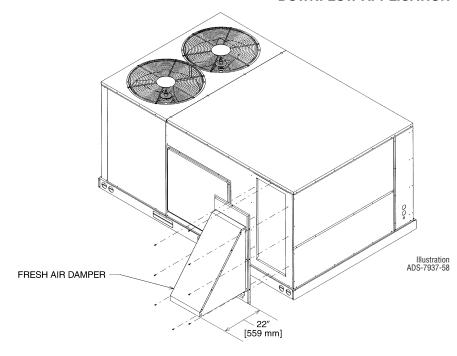
FRESH AIR DAMPER

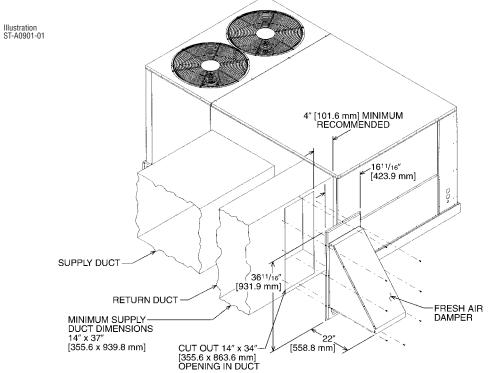

MOTORIZED DAMPER KIT RXRX-AW02 (Motor Kit for RXRF-KDA1)

[] Designates Metric Conversions

RXRF-KDA1 (Manual)

DOWNFLOW OR HORIZONTAL APPLICATION

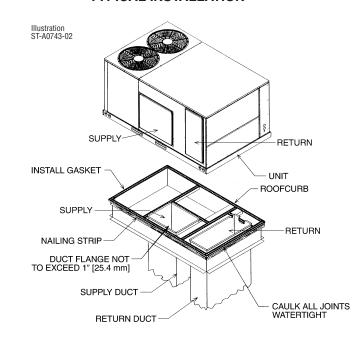



FRESH AIR DAMPER (Cont.)

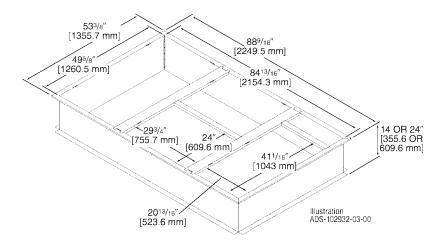
RXRF-JDA1 (Manual) RXRF-JDB1 (Motorized)

DOWNFLOW APPLICATION

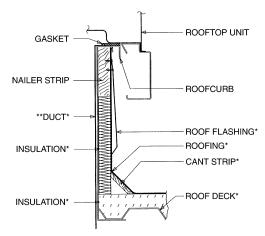
HORIZONTAL APPLICATION



ROOFCURBS (Full Perimeter)


- Rheem's new roofcurb design can be utilized on 7.5 and 10 ton [26.4 and 35.2 kW] SJNL- models.
- Two available heights (14" [356 mm] and 24" [610 mm]) for ALL models.
- Quick assembly corners for simple and fast assembly.
- Opening provided in bottom pan to match the "Thru the Curb" electrical connection opening provided on the unit base pan.
- 2" [51 mm] x 4" [102 mm] Nailer provided.
- Insulating panels not required because of insulated outdoor base pan.
- Sealing gasket (28" [711 mm]) provided with Roofcurb.
- Packaged for easy field assembly.

Roofcurb Model	Height of Curb
RXKG-CAE14	14" [356 mm]
RXKG-CAE24	24" [610 mm]


TYPICAL INSTALLATION

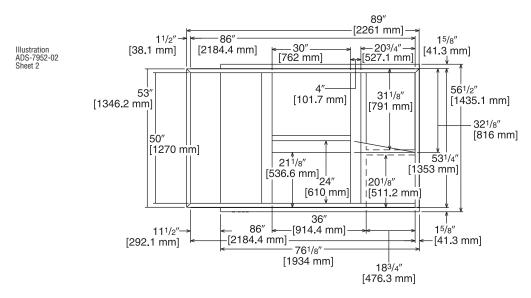
ROOFCURB INSTALLATION

[] Designates Metric Conversions

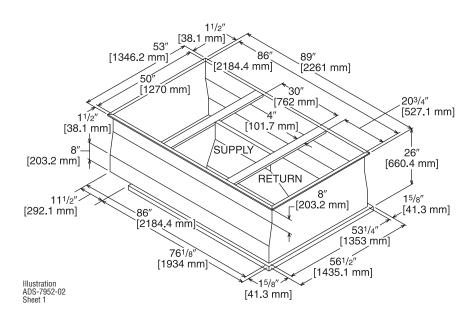
*BY CONTRACTOR

**FOR INSTALLATION OF DUCT AS SHOWN, USE RECOMMENDED DUCT SIZES FROM ROOFCURB INSTALLATION INSTRUCTIONS. FOR DUCT FLANGE ATTACHMENT TO UNIT, SEE UNIT INSTALLATION INSTRUCTIONS FOR RECOMMENDED DUCT SIZES.

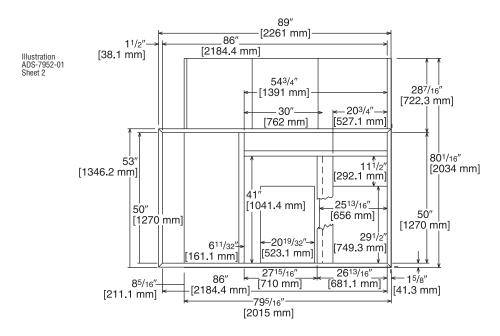
Illustration ST-A0743-02


ROOFCURB ADAPTERS

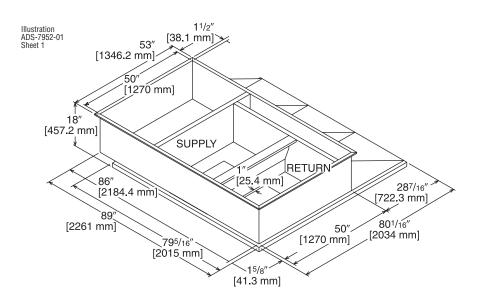
OLD MODELS	OLD ROOFCURB	ROOFCURB ADAPTER	NEW MODELS (All Share Common Footprint)
(-)RCF, (-)REF-075/076 (-)RGF-150075, (-)RGF-131076 (-)RGF-201076	RXRK-E50	RXRX-CDCE50	
(-)RGF-200075 (-)RGG, (-)REG, (-)RCG-075 (-)RGF, (-)REF, (-)RCF-085 (-)RGF, (-)REF, (-)RCF-100 (-)RGG, (-)REG, (-)RCG-100	RXRK-E54	RXRX-CFCE54	(-)JNL-B090 (-)JNL-B120
(-)RGF, (-)REF, (-)RCF-125	RXRK-E56	RXRX-CFCE56	
(-)PDC-075 (-)PDC-100/101	RXPK-C12	RXRX-CGCC12	


NOTE: Ductwork modifications may be necessary if the capacity and/or indoor airflow rate of replacement unit is not equivalent to that of the unit being replaced.

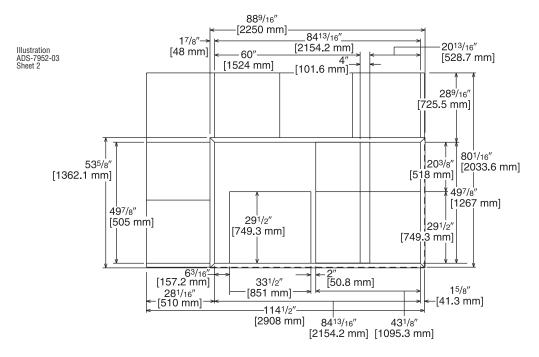
RXRX-CDCE50



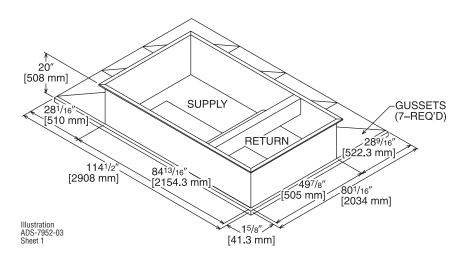
TOP VIEW



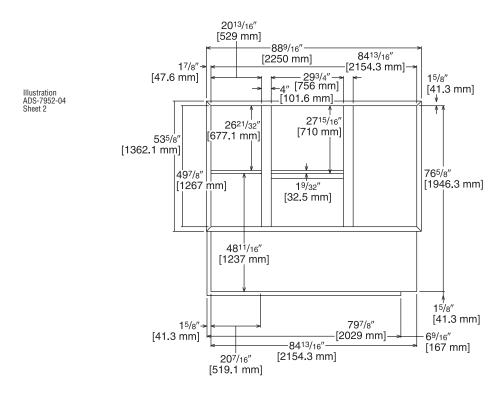
RXRX-CFCE54



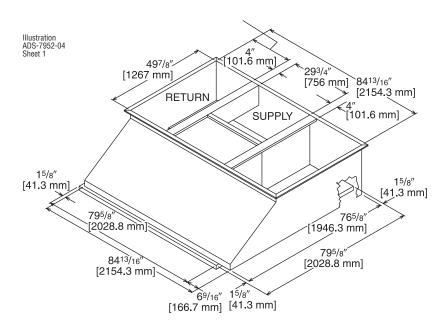
TOP VIEW



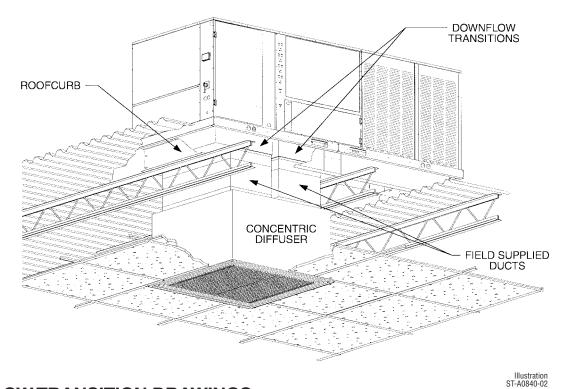
RXRX-CFCE56



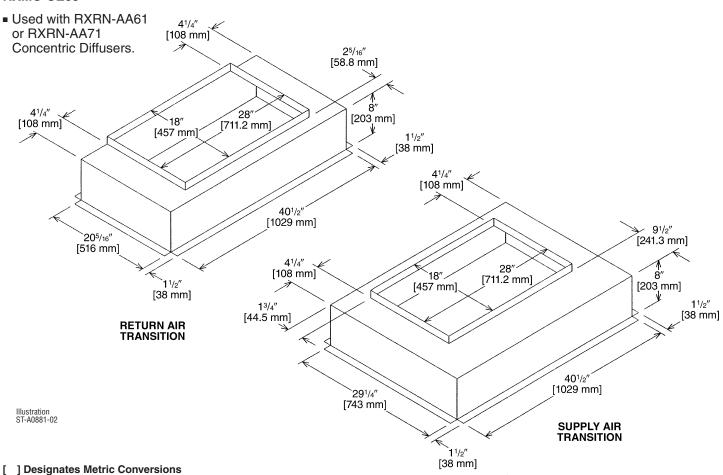
TOP VIEW



RXRX-CGCC12



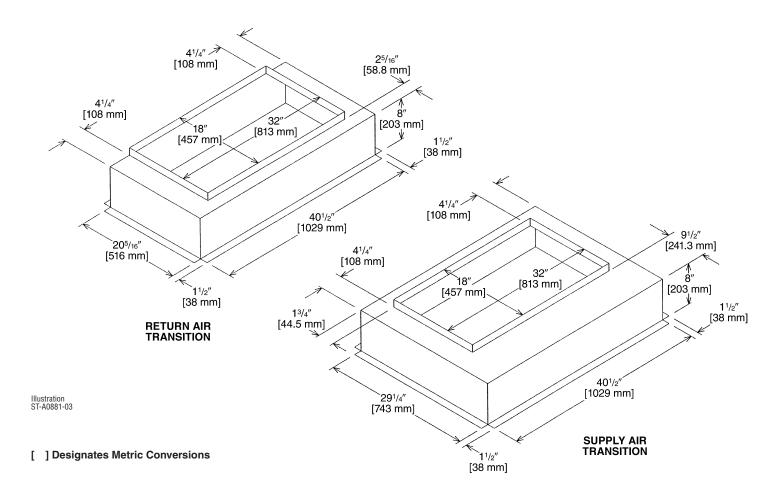
TOP VIEW



CONCENTRIC DIFFUSER APPLICATION

DOWNFLOW TRANSITION DRAWINGS

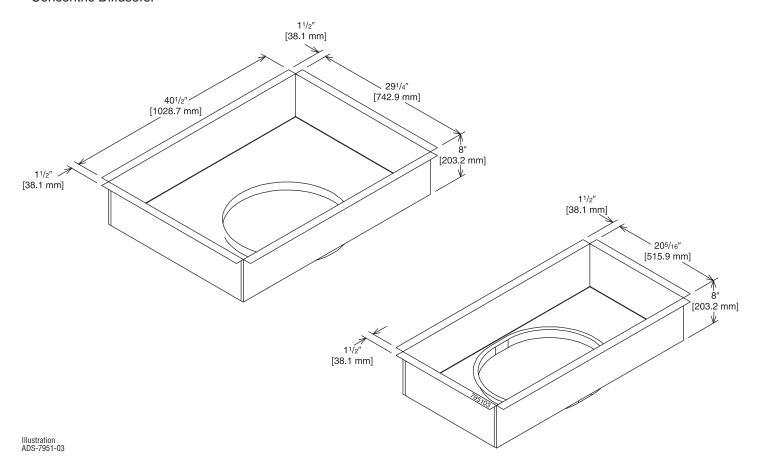
RXMC-CE05



DOWNFLOW TRANSITION DRAWINGS (Cont.)

RXMC-CF06

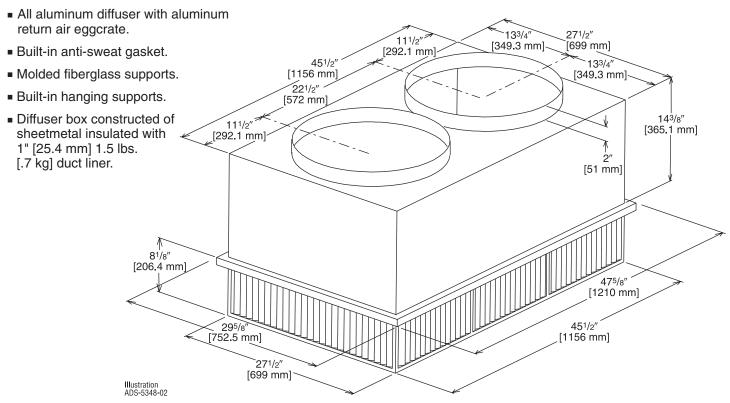
 Used with RXRN-AA66 or RXRN-AA76 Concentric Diffusers.



DOWNFLOW TRANSITION DRAWINGS (Cont.)

RXMC-CD04

 Used with RXRN-FA65 or RXRN-FA75 Concentric Diffusers.



CONCENTRIC DIFFUSER—STEP DOWN

RXRN-FA65 (7.5 Ton [29.9 kW] Model)

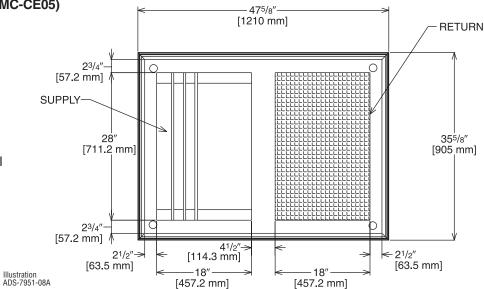
For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

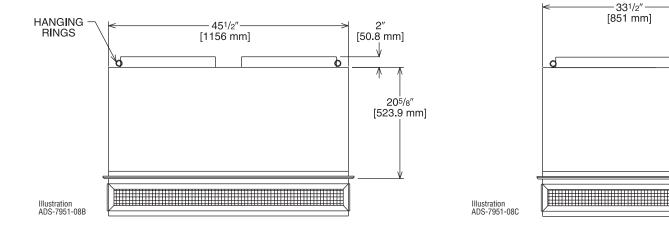
ENGINEERING DATA®

Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	2600 [1227]	0.17 [0.042]	24-29 [7.3-8.8]	669 [3.4]	20
	2800 [1321]	0.20 [0.050]	25-30 [7.6-9.1]	720 [3.7]	25
RXRN-FA65	3000 [1416]	0.25 [0.062]	27-33 [8.2-10.1]	772 [3.9]	25
	3200 [1510]	0.31 [0.077]	28-35 [8.5-10.7]	823 [4.2]	25
	3400 [1604]	0.37 [0.092]	30-37 [9.1-11.3]	874 [4.4]	30

NOTES: \odot All data is based on the air diffusion council guidelines.

- 2 Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.




CONCENTRIC DIFFUSER—STEP DOWN 18" x 28" [457.2 x 711.2 mm]

RXRN-AA61 (10 Ton [35.2 kW] Model)

For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [457.2 x 711.2 mm] Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.
- Double deflection diffuser with the blades secured by spring steel.

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ⊕ (dbA)
	3600 [1699]	0.17 [0.042]	25-33 [7.6-10.1]	851 [4.3]	30
	3800 [1793]	0.18 [0.045]	27-35 [8.2-10.7]	898 [4.6]	30
RXRN-AA61	4000 [1888]	0.21 [0.052]	29-37 [8.8-11.3]	946 [4.8]	30
	4200 [1982]	0.24 [0.060]	32-40 [9.8-12.2]	993 [5.0]	30
	4400 [2076]	0.27 [0.067]	34-42 [10.4-12.8]	1040 [5.3]	30

NOTES: ① All data is based on the air diffusion council guidelines.

- 2 Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.

FLUSH MOUNT CONCENTRIC DIFFUSER—FLUSH

RXRN-FA75 (7.5 Ton [26.4 kW] Models)

For Use With Downflow Transition (RXMC-CD04) and 20" [508 mm] Round Supply and Return Ducts

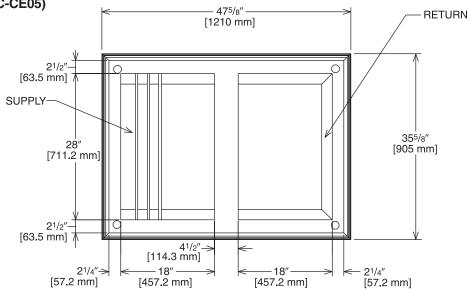
■ All aluminum diffuser with aluminum return air eggcrate. 131/2" Built-in anti-sweat gasket. 111/4" [343 mm] [686 mm] [286 mm] 45" ■ Molded fiberglass supports. [1143 mm 131/2" [343 mm] ■ Built-in hanging supports. 221/2 [572 mm] ■ Diffuser box constructed of sheetmetal insulated with 111/4" 1" [25.4 mm] 1.5 lbs. [286 mm] 16⁵/8" [422<u>.</u>3 mm] [.7 kg] duct liner. [51 mm] [1210 mm] Illustration ADS-5348-04 295/8" [753 mm]

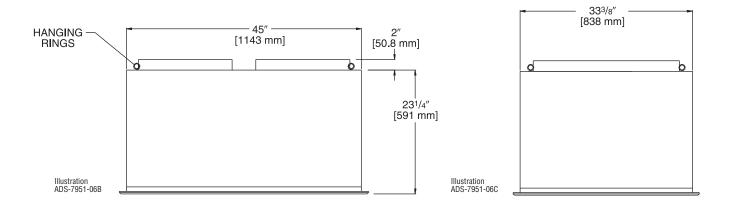
ENGINEERING DATA®

Model No.	Flow Rate CFM [L/s]	Static Pressure in. w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ⊕ (dbA)
	2600 [1227]	.17 [0.042]	19-24 [5.8-7.3]	663 [3.4]	30
	2800 [1321]	.20 [0.050]	20-28 [6.1-8.5]	714 [3.6]	35
RXRN-FA75	3000 [1416]	.25 [0.062]	21-29 [6.4-8.8]	765 [3.9]	35
	3200 [1510]	.31 [0.077]	22-29 [6.7-8.8]	816 [4.1]	40
	3400 [1604]	.37 [0.092]	22-30 [6.7-9.1]	867 [4.4]	40

 $\mbox{NOTES:} \ \mbox{\textcircled{\oplus}}$ All data is based on the air diffusion council guidelines.

- ② Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- $\ensuremath{\mathfrak{G}}$ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.




CONCENTRIC DIFFUSER—FLUSH and 18" x 28" [457.2 x 711.2 mm]

RXRN-AA71 (10 Ton [35.2 kW] Model)

For Use With Downflow Transition (RXMC-CE05) and 18" x 28" [457.2 x 711.2 mm] Supply and Return Ducts

- All aluminum diffuser with aluminum return air eggcrate.
- Built-in anti-sweat gasket.
- Molded fiberglass supports.
- Built-in hanging supports.
- Diffuser box constructed of sheetmetal insulated with 1" [25.4 mm] 1.5 lbs.
 [.7 kg] duct liner.

ENGINEERING DATA[®]

Model No.	Flow Rate CFM [L/s]	Static Pressure in w.c. [kPa]	Throw ② ③ Feet [m]	Neck Velocity fpm [m/s]	Noise Level ④ (dbA)
	3600 [1699]	0.17 [0.042]	22-29 [6.7-8.8]	844 [4.3]	35
	3800 [1793]	0.18 [0.045]	22-30 [6.7-9.1]	891 [4.5]	40
RXRN-AA71	4000 [1888]	0.21 [0.052]	24-33 [7.3-10.1]	938 [4.8]	40
	4200 [1982]	0.24 [0.060]	26-35 [7.9-10.7]	985 [5.0]	40
	4400 [2076]	0.27 [0.067]	28-37 [8.5-11.3]	1032 [5.2]	40

NOTES: ① All data is based on the air diffusion council guidelines.

- 2 Throw data is based on 75 FPM Terminal Velocities using isothermal air.
- ③ Throw is based on diffuser blades being directed in a straight pattern.
- Actual noise levels may vary due to duct design and do not include transmitted unit noise.
 Adequate duct attenuation must be provided to reduce sound output from the unit.

Illustration ADS-7951-06A

MECHANICAL SPECIFICATIONS—SJNL-SERIES

General

Units shall be convertible airflow. All units shall be factory assembled, internally wired, fully charged with 410A, and 100 percent run-tested before leaving the factory. Wiring internal to the unit shall be colored and numbered for simplified identification. Units shall be designed n accordance with UL 1995.

Casing

Unit casing shall be constructed of zinc coated, heavy gauge, galvanized steel. Exterior surfaces shall be cleaned, phosphatized, and finished with a weatherresistant baked enamel finish. Unit's surface shall be tested 1000 hours in a salt spray test in compliance with ASTM B117. Cabinet construction shall allow for all maintenance on one side of the unit. All exposed vertical panels and top covers in the indoor air section shall be insulated with a cleanable foil faced, fire retardant permanent, odorless glass fiber material and secured with adhesive and mechanical fasteners. The base of the unit shall be insulated with foil-faced material. All insulation edges shall be either captured or sealed. The unit's base pan shall have no penetrations within the perimeter of the curb other than the raised 1-1/8" [28.58 mm] high downflow supply return openings to provide an added water integrity precaution. The base rails of the unit shall have provisions for forklift and crane lifting, with forklift capabilities on three sides of the unit.

Unit Top

The indoor top cover shall be one-piece construction, it shall not be double-hemmed and gasket-sealed.

Filters

Two inch [50.8 mm], throwaway filters shall be standard on all units.

Compressors

Units shall have direct-drive, hermetic, scroll type compressors with centrifugal type oil pumps. Motor shall be suction gascooled and shall have a voltage utilization range of plus or minus 10 percent of unit nameplate voltage. Internal overloads shall be provided with the scroll compressors. The compressor shall have external isolation to minimize noise.

Refrigerant Circuits

Refrigerant circuit shall have a TXV control expansion device. External service pressure ports, shall be factory-installed as standard.

Evaporator And Condenser Coils

Internally finned, 3/8" [9.53 mm] copper tubes mechanically bonded to a configured aluminum plate fin shall be standard. Coils shall be leak tested at the factory to ensure pressure integrity. The evaporator coil and condenser coil shall be leak tested to 250 psig and pressure tested to 550 psig. A sloped condensate drain pan shall be standard.

Outdoor Fans

The outdoor fans shall be direct-drive statically and dynamically balanced, drawthrough in the vertical discharge position. The fan motor shall be permanently lubricated and shall have built-in thermal overload protection.

Indoor Fans

All 3-phase units offer belt drive, FC centrifugal fans with adjustable motor sheaves. All motors shall be thermally protected.

Controls

Unit shall be completely factory wired with necessary controls and contactor pressure lugs or terminal block for power wiring. Units shall provide an external location for mounting a fused disconnect device.

24-volt electromechanical control circuit shall include control transformer and contactor pressure lugs for power wiring. Unit shall have single point power entry as standard.

Accessories/Option

Roof Curb—The roof curb shall be designed to mate with the unit's downflow supply and return openings and provide support and a watertight installation when installed properly. The roof curb design shall allow field-fabricated rectangular supply/return ductwork to be connected directly to the curb. Curb design shall comply with NRCA requirements. Curbs shall be shipped knocked down for toolless field assembly and shall include wood nailer strips.

Economizer—This accessory shall be either field or factory-installed and is available with barometric relief standard. The assembly includes direct drive gear driver, fully modulating 0-100 percent motor and dampers, minimum position setting, mixed air sensor, wiring harness with plug, and single enthalpy control. Optional differential enthalpy control shall be field-installed. The factory-installed economizer arrives ready for operation.

Remote Potentiometer—Field installed, the minimum position setting of economizer shall be adjusted with this accessory.

Motorized Outside Air Dampers—

Field-installed manually set outdoor air dampers shall provide up to 50 percent outside air. Once set, outdoor air dampers shall open to set position when indoor fan starts. The damper shall close to the full closed position when indoor fan shuts down.

Manual Outside Air Damper—Factory or field-installed rain hood and screen shall provide up to 50 percent outside air.

Oversized Motors—Factory installed belt drive oversized motors shall be available for high static applications.

MECHANICAL SPECIFICATIONS—SJNL- SERIES

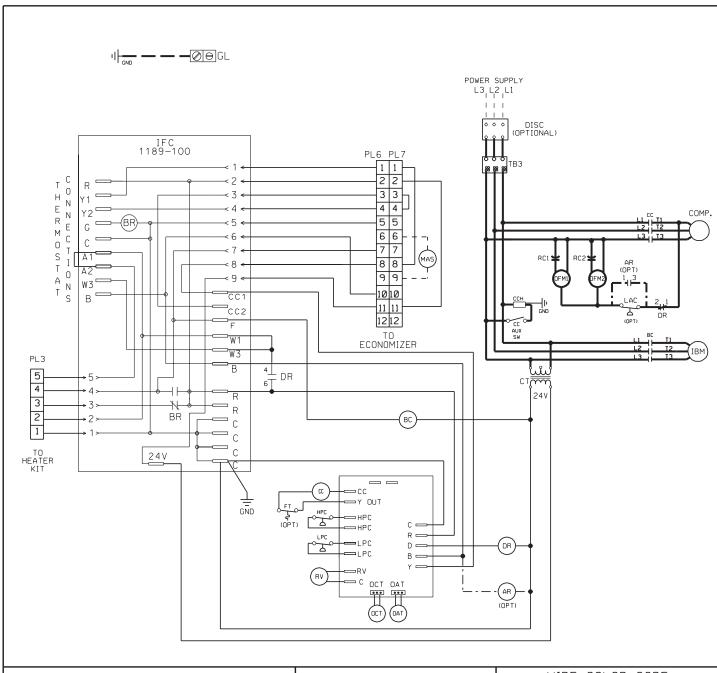
Through the Base Electrical Access—An electrical service entrance shall be factory provided allowing electrical access for both, control and main power connection inside the curb and through the base of the unit.

Unpowered Convenience Outlet—This factory-installed option is a GFCI, 120v/ 15amp, 2 plug, and convenience outlet, unpowered. When the convenience outlet is powered, a service receptacle disconnect will be available. The convenience outlet is powered from the line side of the disconnect or circuit breaker, and therefore will not be affected by the position of the disconnect or circuit breaker. This option can only be ordered with the Disconnect Switch.

Freeze/Clogged Filter Switches—This factory or field-installed option allows for individual fan failure or dirty filter protection. If indoor coil gets too cold due to low airflow, compressor operation will be temporarily interrupted.

Enthalpy Control—Single Enthalpy Control shall be standard for all economizers. Enthalpy control offers a higher level of comfort control, along with energy savings potential, than the standard dry bulb control. This is due to the additional wet bulb sensing capability.

High Pressure Cutout—High pressure cutout shall be standard on all models. All scroll compressors shall include Internal Pressure Relief as standard.


Low Pressure/Loss of Charge—Low pressure switch shall be standard on all models.

Hinged Access Doors—Stainless steel metal hinges and 1/4 turn fasteners are standard on the Filter/Electrical Access Door, Heat Exchanger Door and Blower Door.

Differential Enthalpy—Adds on to the standard single control with other enthalpy sensors that compare total heat content of the indoor air and outdoor air to determine the most efficient air source. This control option offers the highest level of comfort control, plus energy efficiency available.

Low Ambient Cooling—Electromechanical models have cooling capabilities to 40°F as built, or to 0°F by adding the optional low ambient (frostat) control.

COMPONENT CODE

AUXILLIARY SWITCH BLOWER MOTOR CONTACTOR BLOWER RELAY COMPRESSOR CONTACTOR BC BR CC CCH COMP CT FT

CRANKCASE HEATER
COMPRESSOR
CONTROL TRANSFORMER
FREEZE STAT GROUND LUG GROUND

HIGH PRESSURE CONTROL HPC IBM IFC INDOOR BLOWER MOTOR INTEGRATED FURNACE CONTROL LAC LOW AMBIENT CONTROL LOW PRESSURE CONTROL

MIXED AIR SENSOR OUTDOOR FAN MOTOR OPTIONAL

RUN CAPACITOR TERMINAL BLOCK

WIRING INFORMATION

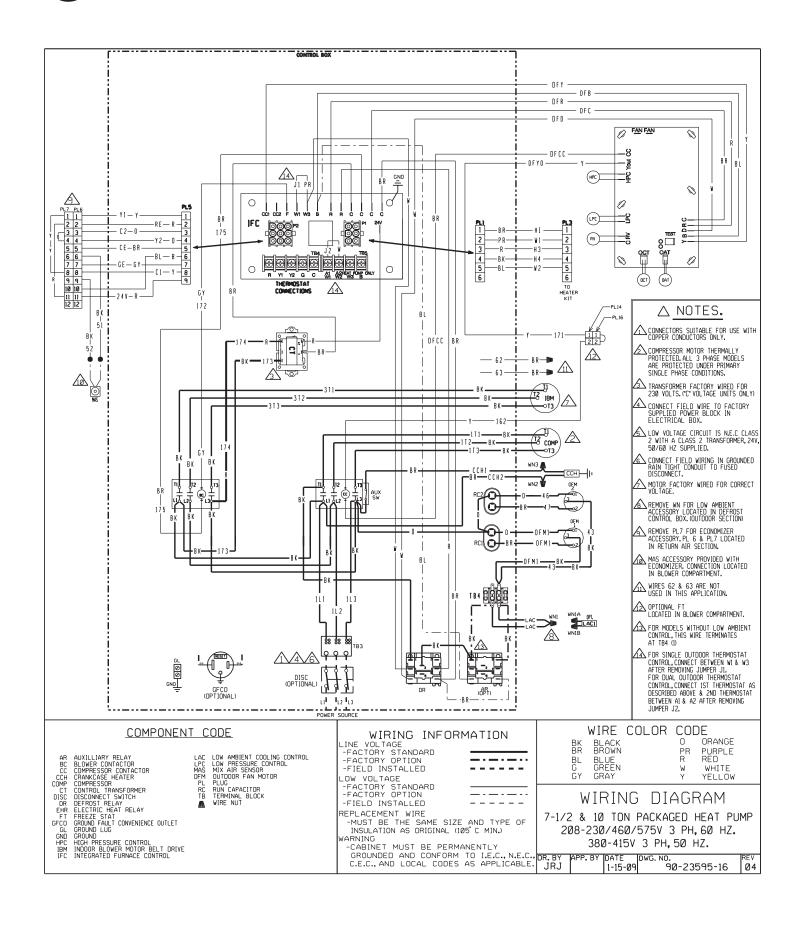
LINE VOLTAGE
-FACTORY STANDARD
-FACTORY OPTION -FIELD INSTALLED

LOW VOLTAGE
-FACTORY STANDARD
-FACTORY OPTION -FIELD INSTALLED REPLACEMENT WIRE

-MUST BE THE SAME SIZE AND TYPE OF INSULATION AS ORIGINAL (105°C MIN.) WARNING -CABINET MUST BE PERMANENTLY

GROUNDED AND CONFORM TO I.E.C., N.E.C., C.E.C., AND LOCAL CODES AS APPLICABLE.

WIRE COLOR CODE


BLACK ORANGE 0 BROWN PURPLE R RED WHITE GREEN GΥ YELLOW GRAY

WIRING SCHEMATIC

7-1/2 & 10 TON PACKAGED HEAT PUMP 208-230/460/575V 3 PH, 60 HZ 380-415V 3 PH, 50 HZ.

-					-
	JRJ		02-10-09	90-23595-17	04
	DR.BY	APP.BY	DATE	DWG. NO.	REV

WIRING SCHEMATICS—SJNL- SERIES

NOTES

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and Local codes, regulations, and practices.

Rheem Heating, Cooling and Water Heating

P.O. Box 17010, Fort Smith, AR 72917

